The response of a turbulent boundary layer to a step change in surface roughness Part 1. Smooth to rough

1971 ◽  
Vol 48 (4) ◽  
pp. 721-761 ◽  
Author(s):  
R. A. Antonia ◽  
R. E. Luxton

The structure and growth of the internal boundary layer which forms downstream of a sudden change from a smooth to a rough surface under zero pressure gradient conditions has been studied experimentally. To keep pressure disturbances due to the roughness change small, the level of the rough surface was depressed, so that the crest of the roughness was aligned with the level of the smooth surface. It has been found that, in the region near the change, the structure of the internal layer is largely independent of that in the almost undisturbed outer layer, whilst both the zero time delay and the moving axis integral length scales in the internal layer are significantly reduced below those on the smooth wall. The growth-rate of the internal layer is similar to that of the zero pressure gradient boundary layer, whilst the level of turbulence inside the internal layer is high because of the large turbulent energy production near the rough wall. From the mixing length results, and an analysis of the turbulent energy equation, it is deduced that the internal layer flow near the wall is not in energy equilibrium, and hence the concept of inner layer similarity breaks down. From an initially self-preserving state on the smooth wall, the turbulent boundary layer approaches a second self-preserving state on the rough wall well downstream of the roughness step.

1976 ◽  
Vol 27 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Yutaka Tsuji ◽  
Yoshinobu Morikawa

SummaryAn experiment was made on a turbulent boundary layer with adverse and favourable pressure gradients alternating twice along the stream. The most important findings of the present study are as follows. In the region of the adverse pressure gradient downstream of the strong acceleration, an internal boundary layer develops within the boundary layer. In this internal layer large advection of turbulent energy occurs and the flow is locally non-equilibrium even near the wall. As a result the usual logarithmic law and turbulence similarity in the viscous sublayer break down.


2015 ◽  
Vol 788 ◽  
pp. 57-69 ◽  
Author(s):  
K. M. Talluru ◽  
L. Djenidi ◽  
Md. Kamruzzaman ◽  
R. A. Antonia

A self-preservation (SP) analysis is carried out for a zero pressure gradient (ZPG) rough-wall turbulent boundary layer with a view to establishing the requirements of complete SP (i.e. SP across the entire layer) and determining if these are achievable. The analysis shows that SP is achievable in certain rough-wall boundary layers (irrespectively of the Reynolds number$Re$), when the mean viscous stress is zero or negligible compared to the form drag across the entire boundary layer. In this case, the velocity scale$u^{\ast }$must be constant, the length scale$l$should vary linearly with the streamwise distance$x$and the roughness height$k$must be proportional to$l$. Although this result is consistent with that of Rotta (Prog. Aeronaut. Sci., vol. 2 (1), 1962, pp. 1–95), it is derived in a more rigorous manner than the method employed by Rotta. Further, it is noted that complete SP is not possible in a smooth-wall ZPG turbulent boundary layer. The SP conditions are tested against published experimental data on both a smooth wall (Kulandaivelu, 2012, PhD thesis, The University of Melbourne) and a rough wall, where the roughness height increases linearly with$x$(Kamedaet al.,J. Fluid Sci. Technol., vol. 3 (1), 2008, pp. 31–42). Complete SP in a ZPG rough-wall turbulent boundary layer seems indeed possible when$k\propto x$.


1977 ◽  
Vol 82 (3) ◽  
pp. 507-528 ◽  
Author(s):  
Hugh W. Coleman ◽  
Robert J. Moffat ◽  
William M. Kays

The behaviour of a fully rough turbulent boundary layer subjected to favourable pressure gradients both with and without blowing was investigated experimentally using a porous test surface composed of densely packed spheres of uniform size. Measurements of profiles of mean velocity and the components of the Reynolds-stress tensor are reported for both unblown and blown layers. Skin-friction coefficients were determined from measurements of the Reynolds shear stress and mean velocity.An appropriate acceleration parameterKrfor fully rough layers is defined which is dependent on a characteristic roughness dimension but independent of molecular viscosity. For a constant blowing fractionFgreater than or equal to zero, the fully rough turbulent boundary layer reaches an equilibrium state whenKris held constant. Profiles of the mean velocity and the components of the Reynolds-stress tensor are then similar in the flow direction and the skin-friction coefficient, momentum thickness, boundary-layer shape factor and the Clauser shape factor and pressure-gradient parameter all become constant.Acceleration of a fully rough layer decreases the normalized turbulent kinetic energy and makes the turbulence field much less isotropic in the inner region (forFequal to zero) compared with zero-pressure-gradient fully rough layers. The values of the Reynolds-shear-stress correlation coefficients, however, are unaffected by acceleration or blowing and are identical with values previously reported for smooth-wall and zero-pressure-gradient rough-wall flows. Increasing values of the roughness Reynolds number with acceleration indicate that the fully rough layer does not tend towards the transitionally rough or smooth-wall state when accelerated.


1999 ◽  
Vol 395 ◽  
pp. 271-294 ◽  
Author(s):  
L. DJENIDI ◽  
R. ELAVARASAN ◽  
R. A. ANTONIA

Laser-induced uorescence (LIF) and laser Doppler velocimetry (LDV) are used to explore the structure of a turbulent boundary layer over a wall made up of two-dimensional square cavities placed transversely to the flow direction. There is strong evidence of occurrence of outflows of fluid from the cavities as well as inflows into the cavities. These events occur in a pseudo-random manner and are closely associated with the passage of near-wall quasi-streamwise vortices. These vortices and the associated low-speed streaks are similar to those found in a turbulent boundary layer over a smooth wall. It is conjectured that outflows play an important role in maintaining the level of turbulent energy in the layer and enhancing the approach towards self-preservation. Relative to a smooth wall layer, there is a discernible increase in the magnitudes of all the Reynolds stresses and a smaller streamwise variation of the local skin friction coefficient. A local maximum in the Reynolds shear stress is observed in the shear layers over the cavities.


1997 ◽  
Vol 342 ◽  
pp. 263-293 ◽  
Author(s):  
H. S. SHAFI ◽  
R. A. ANTONIA

Measurements of the spanwise and wall-normal components of vorticity and their constituent velocity derivative fluctuations have been made in a turbulent boundary layer over a mesh-screen rough wall using a four-hot-wire vorticity probe. The measured spectra and variances of vorticity and velocity derivatives have been corrected for the effect of spatial resolution. The high-wavenumber behaviour of the spectra conforms closely with isotropy. Over most of the outer layer, the normalized magnitudes of the velocity derivative variances differ significantly from those over a smooth wall layer. The differences are such that the variances are much more nearly isotropic over the rough wall than on the smooth wall. This behaviour is consistent with earlier observations that the large-scale structure in this rough wall layer is more isotropic than that in a smooth wall layer. Isotropy-based approximations for the mean energy dissipation rate and mean enstrophy are consequently more reliable in this rough wall layer than in a smooth wall layer. In the outer layer, the vorticity variances are slightly larger than those over a smooth wall; reflecting structural differences between the two flows.


2011 ◽  
Vol 686 ◽  
pp. 507-533 ◽  
Author(s):  
M. Inoue ◽  
D. I. Pullin

AbstractA near-wall subgrid-scale (SGS) model is used to perform large-eddy simulation (LES) of the developing, smooth-wall, zero-pressure-gradient flat-plate turbulent boundary layer. In this model, the stretched-vortex, SGS closure is utilized in conjunction with a tailored, near-wall model designed to incorporate anisotropic vorticity scales in the presence of the wall. Large-eddy simulations of the turbulent boundary layer are reported at Reynolds numbers ${\mathit{Re}}_{\theta } $ based on the free-stream velocity and the momentum thickness in the range ${\mathit{Re}}_{\theta } = 1{0}^{3} \text{{\ndash}} 1{0}^{12} $. Results include the inverse square-root skin-friction coefficient, $ \sqrt{2/ {C}_{f} } $, velocity profiles, the shape factor $H$, the von Kármán ‘constant’ and the Coles wake factor as functions of ${\mathit{Re}}_{\theta } $. Comparisons with some direct numerical simulation (DNS) and experiment are made including turbulent intensity data from atmospheric-layer measurements at ${\mathit{Re}}_{\theta } = O(1{0}^{6} )$. At extremely large ${\mathit{Re}}_{\theta } $, the empirical Coles–Fernholz relation for skin-friction coefficient provides a reasonable representation of the LES predictions. While the present LES methodology cannot probe the structure of the near-wall region, the present results show turbulence intensities that scale on the wall-friction velocity and on the Clauser length scale over almost all of the outer boundary layer. It is argued that LES is suggestive of the asymptotic, infinite Reynolds number limit for the smooth-wall turbulent boundary layer and different ways in which this limit can be approached are discussed. The maximum ${\mathit{Re}}_{\theta } $ of the present simulations appears to be limited by machine precision and it is speculated, but not demonstrated, that even larger ${\mathit{Re}}_{\theta } $ could be achieved with quad- or higher-precision arithmetic.


2009 ◽  
Vol 641 ◽  
pp. 129-155 ◽  
Author(s):  
RAÚL BAYOÁN CAL ◽  
BRIAN BRZEK ◽  
T. GUNNAR JOHANSSON ◽  
LUCIANO CASTILLO

Laser Doppler anemometry measurements of the mean velocity and Reynolds stresses are carried out for a rough-surface favourable pressure gradient turbulent boundary layer. The experimental data is compared with smooth favourable pressure gradient and rough zero-pressure gradient data. The velocity and Reynolds stress profiles are normalized using various scalings such as the friction velocity and free stream velocity. In the velocity profiles, the effects of roughness are removed when using the friction velocity. The effects of pressure gradient are not absorbed. When using the free stream velocity, the scaling is more effective absorbing the pressure gradient effects. However, the effects of roughness are almost removed, while the effects of pressure gradient are still observed on the outer flow, when the mean deficit velocity profiles are normalized by the U∞ δ∗/δ scaling. Furthermore, when scaled with U2∞, the 〈u2〉 component of the Reynolds stress augments due to the rough surface despite the imposed favourable pressure gradient; when using the friction velocity scaling u∗2, it is dampened. It becomes ‘flatter’ in the inner region mainly due to the rough surface, which destroys the coherent structures of the flow and promotes isotropy. Similarly, the pressure gradient imposed on the flow decreases the magnitude of the Reynolds stress profiles especially on the 〈v2〉 and -〈uv〉 components for the u∗2 or U∞2 scaling. These effects are reflected in the boundary layer parameter δ∗/δ, which increase due to roughness, but decrease due to the favourable pressure gradient. Additionally, the pressure parameter Λ found not to be in equilibrium, describes the development of the turbulent boundary layer, with no influence of the roughness linked to this parameter. These measurements are the first with an extensive number of downstream locations (11). This makes it possible to compute the required x-dependence for the production term and the wall shear stress from the full integrated boundary layer equation. The finding indicates that the skin friction coefficient depends on the favourable pressure gradient condition and surface roughness.


Sign in / Sign up

Export Citation Format

Share Document