Transmission of water waves through small apertures

1972 ◽  
Vol 55 (1) ◽  
pp. 149-161 ◽  
Author(s):  
D. C. Guiney ◽  
B. J. Noye ◽  
E. O. Tuck

The water-wave transmission coefficient for a small slit in a thick vertical barrier is obtained theoretically and verified both experimentally and by comparison with an exact theory for the case of zero thickness. Similar shallow-water results are presented.

2015 ◽  
Vol 802 ◽  
pp. 57-62
Author(s):  
Hee Min Teh

Breakwaters made of sand container is one of the most economical options for wave protection at coastal areas. These breakwaters have been adopted with mixed success at several locations in Malaysia. Nevertheless, the performance of these structure has not been properly studied and documented to date. This study is undertaken to study the wave transmission ability of the submerged sand container breakwater with respect to its width and height as well as the water depth. A number of experiments have been conducted in a wave flume to quantify the wave transmission coefficient of the test models of different layouts when exposed to regular waves. The experimental result has shown that the breakwater is effective in arresting the shorter period waves, particularly in shallow water. The height of the breakwater has to be increased in order to arrest the longer period waves.


1968 ◽  
Vol 31 (4) ◽  
pp. 779-788 ◽  
Author(s):  
J. E. Ffowcs Williams ◽  
D. L. Hawkings

Small amplitude waves on a shallow layer of water are studied from the point of view used in aerodynamic sound theory. It is shown that many aspects of the generation and propagation of water waves are similar to those of sound waves in air. Certain differences are also discussed. It is concluded that shallow water simulation can be employed in the study of some aspects of aerodynamically generated sound.


1971 ◽  
Vol 49 (1) ◽  
pp. 65-74 ◽  
Author(s):  
E. O. Tuck

A method of solution is proposed for flows through small apertures in otherwise impermeable barriers. This method, which is an application of the method of matched asymptotic expansions, is used to solve a specific water-wave problem, yielding an approximate formula for the transmission coefficient.


2017 ◽  
Vol 21 (suppl. 1) ◽  
pp. 137-144 ◽  
Author(s):  
Sheng Zhang ◽  
Mingying Liu ◽  
Bo Xu

In this paper, new and more general Whitham-Broer-Kaup equations which can describe the propagation of shallow-water waves are exactly solved in the framework of Hirota?s bilinear method and new multi-soliton solutions are obtained. To be specific, the Whitham-Broer-Kaup equations are first reduced into Ablowitz- Kaup-Newell-Segur equations. With the help of this equations, bilinear forms of the Whitham-Broer-Kaup equations are then derived. Based on the derived bilinear forms, new one-soliton solutions, two-soliton solutions, three-soliton solutions, and the uniform formulae of n-soliton solutions are finally obtained. It is shown that adopting the bilinear forms without loss of generality play a key role in obtaining these new multi-soliton solutions.


Author(s):  
Patrick Lynett ◽  
Philip L.-F. Liu ◽  
Hwung-Hweng Hwung ◽  
Wen-Son Ching

A set of model equations for water wave propagation is derived by piecewise integration of the primitive equations of motion through N arbitrary layers. Within each layer, an independent velocity profile is determined. With N separate velocity profiles, matched at the interfaces of the layers, the resulting set of equations have N+1 free parameters, allowing for an optimization with known analytical properties of water waves. The optimized two-layer model equations show good linear wave characteristics up to kh ≈8, while the second-order nonlinear behavior is well captured to kh ≈6. The three-layer model shows good linear accuracy to kh ≈14, and the four layer to kh ≈20. A numerical algorithm for solving the model equations is developed and tested against nonlinear deep-water wave-group experiments, where the kh of the carrier wave in deep water is around 6. The experiments are set up such that the wave groups, initially in deep water, propagate up a constant slope until reaching shallow water. The overall comparison between the multi-layer model and the experiment is quite good, indicating that the multi-layer theory has good nonlinear, as well has linear, accuracy for deep-water waves.


2021 ◽  
Author(s):  
Yuan Shen ◽  
Bo Tian ◽  
Tian-Yu Zhou ◽  
Xiao-Tian Gao

Abstract Water waves are observed in the rivers, lakes, oceans, etc. Under investigation in this paper is a (2+1)-dimensional Hirota-Satsuma-Ito system arising in the shallow water waves. Via the Hirota method and symbolic computation, we derive some X-type and resonance Y-type soliton solutions. We also work out some hybrid solutions consisting of the resonance Y-type solitons, solitons, breathers and lumps. Graphics we present reveal that the hybrid solutions consisting of the resonance Y-type solitons and solitons/breathers/lumps describe the interactions between the resonance Y-type solitons and solitons/breathers/lumps, respectively. The obtained results rely on the water-wave coefficient in that system.


Sign in / Sign up

Export Citation Format

Share Document