An inviscid numerical simulation of vortex shedding from an inclined flat plate in shear flow

1977 ◽  
Vol 82 (2) ◽  
pp. 241-253 ◽  
Author(s):  
Masaru Kiya ◽  
Mikio Arie

Two-dimensional vortex shedding behind an inclined flat plate in uniform shear flow is numerically investigated by means of an inviscid discrete-vortex approximation. The points of appearance of the vortices are fixed in the plane of the plate at a short distance downstream of the edges of the plate. The strengths of the vortices are determined from the Kutta condition. On the assumption that the steadily periodic flow patterns are independent of initial conditions, the numerical calculations are performed for an inclined flat plate immersed in an incompressible fluid which is set in motion impulsively from rest with the velocity profile of uniform shear flow. The results of analysis show that the Strouhal number of vortex shedding and the time-averaged values of other hydrodynamic characteristics of the flow such as the outer-edge velocity of the separated shear layers, the convective velocity of the shear layers and the drag force exerted on the plate vary closely linearly with the shear parameter of the approaching shear flow. A linear relation between the Strouhal number and the shear parameter is confirmed by an air-tunnel experiment. The effects of the shear parameter on the calculated vortex patterns in the wake are also presented.

1992 ◽  
Vol 114 (3) ◽  
pp. 457-460 ◽  
Author(s):  
Tae Soon Kwon ◽  
Hyung Jin Sung ◽  
Jae Min Hyun

Extensive laboratory experiments were carried out to investigate the uniform-shear flow approaching a circular cylinder. The aim was to present the Strouhal number (St)- Reynolds number (Re) diagrams over a broad range of the shear parameter K (0 ≤ K ≤ 0.25) and at higher values of Re (600 ≤ Re ≤ 1600). An image processing technique, in conjunction with flow visualization studies, was used to secure more quantitative depictions of vortex shedding from the cylinder. The Strouhal number increases with increasing shear parameter. The drag coefficient decreases with increasing Re; also, Cd decreases as the shear parameter K increases.


1995 ◽  
Vol 287 ◽  
pp. 151-171 ◽  
Author(s):  
Hiroshi Sakamoto ◽  
Hiroyuki Haniu

Experiments to investigate the formation mechanism and frequency of vortex shedding from a sphere in uniform shear flow were conducted in a water channel using flow visualization and velocity measurement. The Reynolds number, defined in terms of the sphere diameter and approach velocity at its centre, ranged from 200 to 3000. The shear parameter K, defined as the transverse velocity gradient of the shear flow non-dimensionalized by the above two parameters, was varied from 0 to 0.25. The critical Reynolds number beyond which vortex shedding from the sphere occurred was found to be lower than that for uniform flow and decreased approximately linearly with increasing shear parameter. Also, the Strouhal number of the hairpin-shaped vortex loops became larger than that for uniform flow and increased as the shear parameter increased.The formation mechanism and the structure of vortex shedding were examined on the basis of series of photographs and subsequent image processing using computer graphics. The range of Reynolds number in the present investigation, extending up to 3000, could be classified into three regions on the basis of this study, and it was observed that the wake configuration did not differ substantially from that for uniform flow. Also, unlike the detachment point of vortex loops in uniform flow, which was irregularly located along the circumference of the sphere, the detachment point in shear flow was always on the high-velocity side.


1980 ◽  
Vol 101 (4) ◽  
pp. 721-735 ◽  
Author(s):  
Masaru Kiya ◽  
Hisataka Tamura ◽  
Mikio Arie

The frequency of vortex shedding from a circular cylinder in a uniform shear flow and the flow patterns around it were experimentally investigated. The Reynolds number Re, which was defined in terms of the cylinder diameter and the approaching velocity at its centre, ranged from 35 to 1500. The shear parameter, which is the transverse velocity gradient of the shear flow non-dimensionalized by the above two quantities, was varied from 0 to 0·25. The critical Reynolds number beyond which vortex shedding from the cylinder occurred was found to be higher than that for a uniform stream and increased approximately linearly with increasing shear parameter when it was larger than about 0·06. In the Reynolds-number range 43 < Re < 220, the vortex shedding disappeared for sufficiently large shear parameters. Moreover, in the Reynolds-number range 100 < Re < 1000, the Strouhal number increased as the shear parameter increased beyond about 0·1.


1977 ◽  
Vol 82 (2) ◽  
pp. 223-240 ◽  
Author(s):  
Masaru Kiya ◽  
Mikio Arie

Unsteady separated flow behind an inclined flat plate is numerically studied through the use of the discrete-vortex approximation, in which the shear layers emanating from the edges of the plate are represented by an array of discrete vortices introduced into the flow field at appropriate time intervals at some fixed points near the edges of the plate. The strengths of the nascent vortices are chosen so as to satisfy the Kutta condition at the edges of the plate. Numerical calculations are performed for a plate at 60° incidence impulsively started from rest in an otherwise stationary incompressible fluid, by systematically changing the distance between the location of the nascent vortices and the edges of the plate. The temporal changes in the drag force, the rate of vorticity transport at both edges of the plate and the velocity of the separated shear layers are given together with the flow patterns behind the plate on the basis of this model. The results of the computation show that the vortex street behind the plate inclines as a whole towards the direction of the time-averaged lift force exerted on the plate. It is also predicted from the calculations that the vortex shedding at one edge of the plate will not occur at the mid-interval of the successive vortex shedding at the other edge. The predicted flow patterns are not inconsistent with a few experimental observations based on the flow-visualization technique.


1964 ◽  
Vol 19 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Alar Toomre ◽  
Nicholas Rott

The problem solved is that of the interaction between a laminar boundary layer on a semi-infinite flat plate and an oncoming shear flow of finite lateral dimensions bounded by uniform irrotational flow extending to infinity. The pressures along the plate and upstream of the same are deduced (to a linearized approximation) in the form of a Fourier integral based on the solution of a simpler periodic flow problem. It is found that while the assumption of an infinite, uniform shear flow gives asymptotically correct interaction pressure gradients on the plate near the leading edge, the pressure level even there (compared to upstream infinity) is strongly influenced by the boundedness of the external shear. At distances from the leading edge which are large compared to the lateral extent of the shear flow, the pressure gradients along the plate are shown to be vanishingly smaller than in the infinite shear case.


1975 ◽  
Vol 68 (3) ◽  
pp. 577-590 ◽  
Author(s):  
P. J. Mulhearn ◽  
R. E. Luxton

Measurements of the streamwise development of a variety of velocity correlations in a uniform shear flow are given and discussed. It is concluded that, in the region in which the Reynolds stresses are approximately constant, the turbulence structure is practically independent of all the initial conditions except the initial length scale. It appears that the preferential amplification of some eddy structures by the mean shear effectively destroys information about the initial conditions, apart from the initial length scale, after a total strain of about 1.5.


1980 ◽  
Vol 47 (2) ◽  
pp. 227-233 ◽  
Author(s):  
M. Kiya ◽  
M. Arie

Main features of the formation of vortex street from free shear layers emanating from two-dimensional bluff bodies placed in uniform shear flow which is a model of a laminar boundary layer along a solid wall. This problem is concerned with the mechanism governing transition induced by small bluff bodies suspended in a laminar boundary layer. Calculations show that the background vorticity of shear flow promotes the rolling up of the vortex sheet of the same sign whereas it decelerates that of the vortex sheet of the opposite sign. The steady configuration of the conventional Karman vortex street is not possible in shear flow. Theoretical vortex patterns are experimentally examined by a flow-visualization technique.


Sign in / Sign up

Export Citation Format

Share Document