sphere diameter
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 29)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
pp. 1-11
Author(s):  
Thomas Riedl ◽  
Jörg K.N. Lindner

Abstract Colloidal nanosphere monolayers—used as a lithography mask for site-controlled material deposition or removal—offer the possibility of cost-effective patterning of large surface areas. In the present study, an automated analysis of scanning electron microscopy (SEM) images is described, which enables the recognition of the individual nanospheres in densely packed monolayers in order to perform a statistical quantification of the sphere size, mask opening size, and sphere-sphere separation distributions. Search algorithms based on Fourier transformation, cross-correlation, multiple-angle intensity profiling, and sphere edge point detection techniques allow for a sphere detection efficiency of at least 99.8%, even in the case of considerable sphere size variations. While the sphere positions and diameters are determined by fitting circles to the spheres edge points, the openings between sphere triples are detected by intensity thresholding. For the analyzed polystyrene sphere monolayers with sphere sizes between 220 and 600 nm and a diameter spread of around 3% coefficients of variation of 6.8–8.1% for the opening size are found. By correlating the mentioned size distributions, it is shown that, in this case, the dominant contribution to the opening size variation stems from nanometer-scale positional variations of the spheres.


2021 ◽  
Vol 13 (2) ◽  
pp. 21-33
Author(s):  
Lawrance Gunaraj ◽  
◽  
Sam Paul ◽  
Ebenezer Jacob Dhas ◽  
◽  
...  

Tool vibration is the most unfavourable element in the boring operation, as it contributes to poor surface finish, excessive tool wear, and progressive cutting force. Tool vibration mainly occurs due to the overhanging length of the boring tool and to overcome this factor an appropriate mechanism has to be established which helps to increase the production and quality of the product in manufacturing sector. An impact particle damper with variable material spheres, sphere diameter, and sphere location in a boring tool is fabricated in this work. A 27 run experiments were conducted to find the effect of impact particle damping on tribological properties during boring process. The results shows that impact particle damper increases the rigidity of the tool holder which enhances the tribological properties. The sphere in the boring tool will collide with one another thereby suppressing the tool vibration efficiently.


2021 ◽  
Vol 217 (8) ◽  
Author(s):  
R. Pfaff ◽  
P. Uribe ◽  
R. Fourre ◽  
J. Kujawski ◽  
N. Maynard ◽  
...  

AbstractThe Vector Electric Field Investigation (VEFI) on the C/NOFS satellite comprises a suite of sensors controlled by one central electronics box. The primary measurement consists of a vector DC and AC electric field detector which extends spherical sensors with embedded pre-amps at the ends of six, 9.5-m booms forming three orthogonal detectors with baselines of 20 m tip-to-tip each. The primary VEFI measurement is the DC electric field at 16 vectors/sec with an accuracy of 0.5 mV/m. The electric field receiver also measures the broad spectra of irregularities associated with equatorial spread-F and related ionospheric processes that create the scintillations responsible for the communication and navigation outages for which the C/NOFS mission is designed to understand and predict. The AC electric field measurements range from ELF to HF frequencies.VEFI includes a flux-gate magnetometer providing DC measurements at 1 vector/sec and AC-coupled measurements at 16 vector/sec, as well as a fast, fixed-bias Langmuir probe that serves as the input signal to trigger the VEFI burst memory collection of high time resolution wave data when plasma density depletions are encountered in the low latitude nighttime ionosphere. A bi-directional optical lightning detector designed by the University of Washington (UW) provides continuous average lightning counts at different irradiance levels as well as high time resolution optical lightning emissions captured in the burst memory. The VEFI central electronics box receives inputs from all of the sensors and includes a configurable burst memory with 1–8 channels at sample rates as high as 32 ks/s per channel. The VEFI instrument is thus one experiment with many sensors. All of the instruments were designed, built, and tested at the NASA/Goddard Space Flight Center with the exception of the lightning detector which was designed at UW. The entire VEFI instrument was delivered on budget in less than 2 years.VEFI included a number of technical advances and innovative features described in this article. These include: (1) Two independent sets of 3-axis, orthogonal electric field double probes; (2) Motor-driven, pre-formed cylinder booms housing signal wires that feed pre-amps within tip-mounted spherical sensors; (3) Extended shadow equalizers (2.5 times the sphere diameter) to mitigate photoelectron shadow mismatch for sun angles along the boom directions, particularly important at sunrise/sunset for a low inclination satellite; (4) DC-coupled electric field channels with “boosted” or pre-emphasized amplitude response at ELF frequencies; (5) Miniature multi-channel spectrum analyzers using hybrid technology; (6) Dual-channel optical lightning detector with on-board comparators and counters for 7 irradiance levels with high-time-resolution data capture; (7) Spherical Langmuir probe with Titanium Nitride-coated sensor element and guard; (8) Selectable data rates including 200 kbps (fast), 20 kbps (nominal), and 2 kbps (low for real-time TDRSS communication); and (9) Highly configurable burst memory with selectable channels, sample rates and number, duration, and precursor length of bursts, chosen based on best triggering algorithm “score”.This paper describes the various sensors that constitute the VEFI experiment suite and discusses their operation during the C/NOFS mission. Examples of data are included to illustrate the performance of the different sensors in space.


2021 ◽  
Author(s):  
Robert Pfaff ◽  
Paulo Uribe ◽  
Remy Fourre ◽  
Joe Kujawski ◽  
Nelson Maynard ◽  
...  

Abstract The Vector Electric Field Investigation (VEFI) on the C/NOFS satellite comprises a suite of sensors controlled by one central electronics box. The primary measurement consists of a vector DC and AC electric field detector which extends spherical sensors with embedded pre-amps at the ends of six, 9.5-m booms forming three orthogonal detectors with baselines of 20 m tip-to-tip each. The primary VEFI measurement is the DC electric field at 16 vectors/sec with an accuracy of 0.5 mV/m. The electric field receiver also measures the broad spectra of irregularities associated with equatorial spread-F and related ionospheric processes that create the scintillations responsible for the communication and navigation outages for which the C/NOFS mission is designed to understand and predict. The AC electric field measurements range from ELF to HF frequencies. VEFI includes a flux-gate magnetometer providing DC measurements at 1 vector/sec and AC-coupled measurements at 16 vector/sec, as well as a fast, fixed-bias Langmuir probe that serves as the input signal to trigger the VEFI burst memory collection of high time resolution wave data when plasma density depletions are encountered in the low latitude nighttime ionosphere. A bi-directional optical lightning detector designed by the University of Washington (UW) provides continuous average lightning counts at different irradiance levels as well as high time resolution optical lightning emissions captured in the burst memory. The VEFI central electronics box receives inputs from all of the sensors and includes a configurable burst memory with 1-8 channels at sample rates as high as 32 ks/s per channel. The VEFI instrument is thus one experiment with many sensors. All of the instruments were designed, built, and tested at the NASA/Goddard Space Flight Center with the exception of the lightning detector which was designed at UW. The entire VEFI instrument was delivered on budget in less than 2 years.VEFI included a number of technical advances and innovative features described in this article. These include: (1)Two independent sets of 3-axis, orthogonal electric field double probes; (2) Motor-driven, pre-formed cylinder booms housing signal wires that feed pre-amps within tip-mounted spherical sensors; (3) Extended shadow equalizers (2.5 times the sphere diameter) to mitigate photoelectron shadow mismatch for sun angles along the boom directions, particularly important at sunrise/sunset for a low inclination satellite; (4) DC-coupled electric field channels with “boosted” or pre-emphasized amplitude response at ELF frequencies; (5) Miniature multi-channel spectrum analyzers using hybrid technology; (6) Dual-channel optical lightning detector with on-board comparators and counters for 7 irradiance levels with high-time-resolution data capture; (7) Spherical Langmuir probe with Titanium Nitride-coated sensor element and guard; (8) Selectable data rates including 200 kbps (fast), 20 kbps (nominal), and 2 kbps (low for real-time TDRSS communication); and (9) Highly configurable burst memory with selectable channels, sample rates and number, duration, and precursor length of bursts, chosen based on best triggering algorithm “score”.This paper describes the various sensors that constitute the VEFI experiment suite and discusses their operation during the C/NOFS mission. Examples of data are included to illustrate the performance of the different sensors in space.


Author(s):  
Dennis Jung ◽  
Gözde Duman ◽  
Michael Zimmermann ◽  
Andrea Kruse ◽  
Jale Yanik

AbstractHydrothermal carbonization (HTC) has become a promising technology for the production of hydrochar and carbon spheres. Several studies indicate a strong dependency of the reaction conditions on the sphere diameter. The usage of additives, such as salts, is one possibility to increase the size of the spheres. However, the growth mechanism which leads to larger particles is not fully understood. In this work, kinetic studies of HTC with fructose were performed with different salts as additives. The growth of the particles (the increase in size) has been compared to the formation rates (increase in yield) of hydrochar by using the reaction rate constants from the kinetic model. The results indicate that the acceleration of the growth rate is independent of the formation rate. It is therefore assumed that coagulation, as a growth mechanism, took place. With longer reaction times, the particles reached a stable particle size, independently from the added salts; therefore, it was assumed that the particles underwent some sort of solidification. The state of matter can therefore be described as an intermediate state between liquid and solid, similar to mesophase pitch. Experiments with a stirrer resulted in squashed particles, which supports the model, that the particles exhibit emulsion-like behavior.


2021 ◽  
Vol 11 (16) ◽  
pp. 7319
Author(s):  
Yanwei Zhang ◽  
Qiwei Jian ◽  
Jian Zhou ◽  
Qinglin Huang ◽  
Lin Li ◽  
...  

This paper elaborates the cone–hemispherical gypsum particle breakages under normal contact with different particle shape parameters (contact diameter d, cone angle θ and sphere diameter D) and proposes a simple quantitative approach to discriminate breakage modes. The effects of the particle shape parameters on particle breakage are investigated through analyzing breakage processes, breakage modes and force–displacement curves. Three breakage modes are formed during the breakage experiments: peeling, peeling–splitting and splitting, corresponding to three different normal force–displacement curves. The formation of a conical core is deemed as the precondition for particle splitting. The particle breakage mode transfers from peeling to splitting with the increase in contact diameter d and cone angle θ, but a decrease in sphere diameter D. The critical normal force Fcr is positively linearly related to contact diameter d and cone angle θ, but the relationship between Fcr and sphere diameter D heavily depends on the breakage mode. Furthermore, the critical contact diameter dcr described by cone angle θ and sphere diameter D is proposed to discriminate breakage modes of the cone–hemispherical gypsum particles.


2021 ◽  
Author(s):  
Robert Pfaff ◽  
Paulo Uribe ◽  
Remy Fourre ◽  
Joe Kujawski ◽  
Nelson Maynard ◽  
...  

Abstract The Vector Electric Field Investigation (VEFI) on the C/NOFS satellite comprises a suite of sensors controlled by one central electronics box. The primary measurement consists of a vector DC and AC electric field detector which extends spherical sensors with embedded pre-amps at the ends of six, 9.5-m booms forming three orthogonal detectors with baselines of 20 m tip-to-tip each. The primary VEFI measurement is the DC electric field at 16 vectors/sec with an accuracy of 0.5 mV/m. The electric field receiver also measures the broad spectra of irregularities associated with equatorial spread-F and related ionospheric processes that create the scintillations responsible for the communication and navigation outages for which the C/NOFS mission is designed to understand and predict. The AC electric field measurements range from ELF to HF frequencies. VEFI includes a flux-gate magnetometer providing DC measurements at 1 vector/sec and AC-coupled measurements at 16 vector/sec, as well as a fast, fixed-bias Langmuir probe that serves as the input signal to trigger the VEFI burst memory collection of high time resolution wave data when plasma density depletions are encountered in the low latitude nighttime ionosphere. A bi-directional optical lightning detector designed by the University of Washington (UW) provides continuous average lightning counts at different irradiance levels as well as high time resolution optical lightning emissions captured in the burst memory. The VEFI central electronics box receives inputs from all of the sensors and includes a configurable burst memory with 1-8 channels at sample rates as high as 32 ks/s per channel. The VEFI instrument is thus one experiment with many sensors. All of the instruments were designed, built, and tested at the NASA/Goddard Space Flight Center with the exception of the lightning detector which was designed at UW. The entire VEFI instrument was delivered on budget in less than 2 years.VEFI included a number of technical advances and innovative features described in this article. These include: (1)Two independent sets of 3-axis, orthogonal electric field double probes; (2) Motor-driven, pre-formed cylinder booms housing signal wires that feed pre-amps within tip-mounted spherical sensors; (3) Extended shadow equalizers (2.5 times the sphere diameter) to mitigate photoelectron shadow mismatch for sun angles along the boom directions, particularly important at sunrise/sunset for a low inclination satellite; (4) DC-coupled electric field channels with “boosted” or pre-emphasized amplitude response at ELF frequencies; (5) Miniature multi-channel spectrum analyzers using hybrid technology; (6) Dual-channel optical lightning detector with on-board comparators and counters for 7 irradiance levels with high-time-resolution data capture; (7) Spherical Langmuir probe with Titanium Nitride-coated sensor element and guard; (8) Selectable data rates including 200 kbps (fast), 20 kbps (nominal), and 2 kbps (low for real-time TDRSS communication); and (9) Highly configurable burst memory with selectable channels, sample rates and number, duration, and precursor length of bursts, chosen based on best triggering algorithm “score”.This paper describes the various sensors that constitute the VEFI experiment suite and discusses their operation during the C/NOFS mission. Examples of data are included to illustrate the performance of the different sensors in space.


2021 ◽  
Vol 13 (13) ◽  
pp. 2569
Author(s):  
Pingyi Dong ◽  
Lei Liu ◽  
Shulei Li ◽  
Shuai Hu ◽  
Lingbing Bu

This article presents a new method for retrieving the Ice Water Path (IWP), the median volume equivalent sphere diameter (Dme) of thin ice clouds (IWP < 100 g/m2, Dme < 80 μm) in the Terahertz band. The upwelling brightness temperature depressions caused by the ice clouds at 325.15, 448.0, 664.0 and 874.0 GHz channels are simulated by the Atmospheric Radiative Transfer Simulator (ARTS). The simulated forward radiative transfer models are taken as historical data for the M5 model tree algorithm to construct a set of piecewise functions which represent the relation of simulated brightness temperature depressions and IWP. The inversion results are optimized by an empirical relation of the IWP and the Dme for thin ice clouds which is summarized by previous studies. We inverse IWP and Dme with the simulated brightness temperature and analyze the inversion performance of selected channels. The 874.4 ± 6.0 GHz channel provides the most accurate results, because of the strong brightness temperature response to the change of IWP in the forward radiative transfer model. In order to improve the thin ice clouds IWP and Dme retrieval accuracy at the middle-high frequency channels in Terahertz band, a dual-channel inversion method was proposed that combines the 448.0 ± 3.0 GHz and 664.0 ± 4.2 GHz channel. The error analysis shows that the results of the 874.4 ± 6.0 GHz channel and the dual-channel inversion are reliable, and the IWP inversion results meet the error requirement range proposed by previous studies.


2021 ◽  
Author(s):  
Subrat Garnayak ◽  
Subhasisa Rath

Abstract For the very first time, the present study attempts to address the heat dissipation from an isothermal ribbed sphere under the action of pure natural convection. Semi-circular ribs of different radius are superimposed azimuthally on the outer surface of a sphere. The addition of ribs on the sphere serves a dual purpose in its practical applications; beautification of electronic devices such as spherical light sources and also increase the heat dissipation from the hot surface, which prevents the electronic component from getting overheated. Finite-volume method (FVM) based axisymmetric numerical simulations are performed in the laminar flow regime for the following ranges of non-dimensional parameters: Rayleigh number (102≤=Ra≤=108), inter rib-spacing to sphere diameter (0.191≤=P/D≤=0.785), and rib-radius to sphere diameter (0.03≤=R/D≤=0.083). The main target of this study is to identify the critical parameters for heat transfer enhancement from the ribbed sphere compared to a conventional plane sphere. The results obtained from the present work show that the average Nusselt number increases with an increase in Ra and P/D, whereas it decreases as R/D increases. Effectiveness of the ribs (εrib) and critical Rayleigh numbers (Racr), corresponding to εrib=1, are also calculated. Ribs are more effective in heat dissipation at low Ra and P/D and high R/D. A correlation for the average Nusselt number is also developed in this work, which would help design a better thermal management system.


Sign in / Sign up

Export Citation Format

Share Document