The noise from the large-scale structure of a jet

1978 ◽  
Vol 84 (4) ◽  
pp. 673-694 ◽  
Author(s):  
J. E. Ffowcs Williams ◽  
A. J. Kempton

In this paper we assess the importance as a noise source of the well-ordered large-scale structure of a jet. We propose two simple models of the structure: the first emphasizes those features in common with waves that initially grow on an unstable shear layer but eventually saturate and decay, while the second regards the abrupt pairing of eddies as the most significant event in the jet's development. Our models demonstrate the possibility that forcing at one frequency could increase the broad-band noise of a jet, though, for jets with supersonic eddy convection velocities, the sound propagating in the direction of the Mach angle retains the spectrum of the excitation field. These features are consistent with the available experimental data, and strongly support the view that the large-scale structure of jet turbulence provides the dominant contribution to jet noise.

1985 ◽  
Vol 152 ◽  
pp. 83-111 ◽  
Author(s):  
K. B. M. Q. Zaman

The phenomena of excitation-induced suppression and amplification of broadband jet noise have been experimentally investigated in an effort to understand the mechanisms, especially in relation to the near flow-field large-scale structure dynamics. Suppression is found to occur only in jets at low speeds with laminar exit boundary layers, the optimum occurring for excitation at Stθ ≈ 0.017, where Stθ is the Strouhal number based on the initial shear-layer momentum thickness. The suppression mechanism is linked to an initial-condition effect on the large-scale structure dynamics. The interaction and evolution of laminar-like structures at low jet speeds produce more (normalized) noise and turbulence, compared to asymptotically lower levels at high speeds when the initial shear layer is no longer laminar. The effect of initial condition has been demonstrated by tripped versus untripped jet data. The excitation at Stθ ≈ 0.017 results in a quick roll-up and transition of the laminar shear-layer vortices, yielding coherent structures which are similar to those at high speeds. Thus, the broadband noise and turbulence are suppressed, but at the most to the asymptotically lower levels. When at the asymptotic level, the broadband jet noise can only be amplified by the excitation; the amplification is found to be maximum for excitation in the StD range of 0.65–0.85, StD being the Strouhal number based on the jet diameter. Excitation in this StD range also produces strongest vortexpairing activity. From spectral analysis of the flow-field and the near sound-pressure field, it is inferred that the pairing process induced by the excitation is at the origin of the broadband noise amplification.


1977 ◽  
Vol 80 (2) ◽  
pp. 321-367 ◽  
Author(s):  
C. J. Moore

Large-scale structures in the form of instability waves are an inherent part of a shearlayer mixing process. Such structures are shown to be present in an acoustically and aerodynamically well behaved jet even at high Mach numbers. They do not directly radiate significant acoustic power in a subsonic jet, but do govern the production of the turbulent fluctuations which radiate broad-band jet noise. Over the whole subsonic Mach number range, a significant increase in jet noise can be produced by exciting the shear layer with a fluctuating pressure at the nozzle of only 0·08 % of the jet dynamic head but with the correct Strouhal number. Such excitation by internal acoustic, aerodynamic or thermal fluctuations could explain the variability of jet noise measurements between different rigs and could also be responsible for some components of ‘excess’ noise.


Organized structures in turbulent shear flow have been observed both in the laboratory and in the atmosphere and ocean. Recent work on modelling such structures in a temporally developing, horizontally homogeneous turbulent free shear layer (Liu & Merkine 19766) has been extended to the spatially developing mixing layer, there being no available rational transformation between the two nonlinear problems. We consider the kinetic energy development of the mean flow, large-scale structure and finegrained turbulence with a conditional average, supplementing the usual time average, to separate the non-random from the random part of the fluctuations. The integrated form of the energy equations and the accompanying shape assumptions are used to derive ‘ amplitude ’ equations for the mean flow, characterized by the shear layer thickness, the non-random and the random components of flow (which are characterized by their respective energy densities). The closure problem was overcome by the shape assumptions which entered into the interaction integrals: the instability-wavelike large-scale structure was taken to be two-dimensional and the local vertical distribution function was obtained by solving the Rayleigh equation for various local frequencies; the vertical shape of the mean stresses of the fine-grained turbulence was estimated by making use of experimental results; the vertical shapes of the wave-induced stresses were calculated locally from their corresponding equations.


2014 ◽  
Vol 59 (1) ◽  
pp. 79-92
Author(s):  
Alexander Becker

Wie erlebt der Hörer Jazz? Bei dieser Frage geht es unter anderem um die Art und Weise, wie Jazz die Zeit des Hörens gestaltet. Ein an klassischer Musik geschultes Ohr erwartet von musikalischer Zeitgestaltung, den zeitlichen Rahmen, der durch Anfang und Ende gesetzt ist, von innen heraus zu strukturieren und neu zu konstituieren. Doch das ist keine Erwartung, die dem Jazz gerecht wird. Im Jazz wird der Moment nicht im Hinblick auf ein Ziel gestaltet, das von einer übergeordneten Struktur bereitgestellt wird, sondern so, dass er den Bewegungsimpuls zum nächsten Moment weiterträgt. Wie wirkt sich dieses Prinzip der Zeitgestaltung auf die musikalische Form im Großen aus? Der Aufsatz untersucht diese Frage anhand von Beispielen, an denen sich der Weg der Transformation von einer klassischen zu einer dem Jazz angemessenen Form gut nachverfolgen lässt.<br><br>How do listeners experience Jazz? This is a question also about how Jazz music organizes the listening time. A classically educated listener expects a piece of music to structure, unify and thereby re-constitute the externally given time frame. Such an expectation is foreign to Jazz music which doesn’t relate the moment to a goal provided by a large scale structure. Rather, one moment is carried on to the next, preserving the stimulus potentially ad infinitum. How does such an organization of time affect the large scale form? The paper tries to answer this question by analyzing two examples which permit to trace the transformation of a classical form into a form germane to Jazz music.


Sign in / Sign up

Export Citation Format

Share Document