deep strata
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 15)

H-INDEX

8
(FIVE YEARS 2)

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1157
Author(s):  
Xiaozhen Wang ◽  
Weibing Zhu ◽  
Jianlin Xie ◽  
Hongkai Han ◽  
Jingmin Xu ◽  
...  

Water outbursts and rock bursts often occur during the mining of coal seams under water-rich sandstone strata with thicknesses exceeding 50 m, otherwise called ultrathick-and-hard strata (UTHS), which are common throughout the mining areas of northwestern China. It is important to understand the behaviors of their movement and the evolution of their internal fractures to inform the formulation of effective disaster prevention. Due to the presence of the Luohe Formation UTHS in the overburden of the Tingnan Coal Mine in the Binchang mining area and the powerful mining-induced pressure (MIP) events that occurred during the excavation of Panel #2, the internal strata movement of the overburden and the evolution of its fractures were monitored in situ by fiber optic and multipoint borehole extensometers (MPBX) during the excavation of Working Face #207. It was found that a large number of ring-shaped fractures were observed at 24.8–81 m above the lower boundary of the Luohe Formation—in areas above the goaf of Working Face #206—before Working Face #207 was mined. When Working Face #207 was mined, the fractures that were originally located in the deep strata of the Luohe Formation started to close and migrate towards shallow strata. Crack closure and migration were also observed during the monitoring of internal strata movement. Furthermore, the final displacements of Y1-1-1#, Y1-2-2#, and Y1-2-3# relative to the surface were 77, 248, and 134 mm, which were very small relative to the surface subsidence of 1380 mm. It was found that mining-induced perturbations caused the Luohe Formation UTHS to subside continuously and no risk of a large and sudden break would occur in the Luohe Formation UTHS during the mining of Working Face #207. The results of this study provide important data for the safety of mining operations at Working Face #207, which were validated by microseismic monitoring during the mining of it.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hui Zhang ◽  
Zhiqin Lan ◽  
Xiaoyan Li ◽  
Xinglong Huang

In this study, due to the inconsistencies in the understanding of the sedimentary types in the second section of the Dongying Formation (Ed2) and the third section of the Shahejie Formation (Es3) in the middle and deep strata of Nanpu No. 3 structural area, the depositional characteristics of the deep braided river delta, fan delta, deep-water slump turbidite fan, and coastal and shallow lake in the Nanpu No. 3 structural area were examined in-depth. The investigations were begun based on the descriptions and observations of core samples obtained from eight cored wells in the study area, in combination with seismic, well logging, and rock ore data. The results revealed that the sources of the material in the study area originated from the Shaleitian salient in the southwest direction. It was determined that the fan deltas and the shallow lake sedimentary system had developed during the SQ1 sequence and SQ2 sequence periods. The braided river deltas and the shallow lake and turbidite sedimentary system with multi-stage superposition had developed during the SQ3 to SQ7 sequence periods, and their distribution range had been controlled by the structural background of the gentle slope zone of the lake basin. On that basis, a sequence deposition filling model controlled by a slope break zone in the middle and deep strata of the Nanpu No. 3 structural area was established in this study starting from the typical seismic profile, in which such factors as the tectonic activity characteristics, lake basin boundary shape, water depths, and so on, were comprehensively considered. The goal of this research investigation was to provide beneficial information for oil and gas explorations in similar areas.


2021 ◽  
Vol 42 (1) ◽  
Author(s):  
Yin-Sheng Huang ◽  
Shu-Kun Hsu ◽  
Chih-Chieh Su ◽  
Andrew Tien-Shun Lin ◽  
Pai-Sen Yu ◽  
...  

AbstractWe have collected two shallow gas hydrate samples at two sites having different geological settings off southwest Taiwan during the cruise MD214 in 2018. The first core site, MD18-3542, is on the South Yuan-An East Ridge at ~ 1200 m water deep, where a structural unconformity covered by fine-silt sediments appears at ~ 5.5 m below the seafloor. The second core site, MD18-3543, is close to the Good-Weather Ridge at ~ 1100 m water deep, where a gas-related pockmark structure and authigenic carbonates are present at shallow strata with fine-silt sediments near the seafloor. Sediment properties of core MD18-3542 are distinctively different above and below the layer corresponding to the unconformity. Both cores show obvious gaps or voids in the lower core halves. The core features could be linked to the dissociated methane upward migrating from deep strata. Core site settings with upwelling methane would favor the formation of shallow gas hydrates. At site MD18-3542, the shallow hydrate could be formed due to high concentration methane kept beneath the unconformity covered by fine-silt sediments. At site MD18-3543, the shallow hydrate could be formed due to an extremely high flux of upwelling methane trapped either beneath the authigenic carbonates or fine-silt sediments.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Yuyang Dong ◽  
Jianhui Zeng ◽  
Xianzheng Zhao ◽  
Yanu Wang ◽  
Tianhao Chen ◽  
...  

The Jizhong Depression is located in the western Bohai Bay Basin, eastern China. The deep strata are mainly composed of carbonate buried hill, and the shallow strata are a mainly siliciclastic deposition. In the present work, the Na-K-Mg triangle diagram and geothermometers were used to investigate the geochemical characteristics of shallow groundwater and reservoir temperature features of three geothermal reservoirs in the depression, including the Ordovician, the Cambrian, and the Precambrian Wumishan Formation. The results showed that the geothermal water in the depression could be divided into three groups: group I, Cl· HCO 3 -Na type; group II, Cl-Na type; and group III, Cl-Na·Ca type. By using the Na-K-Mg triangle diagram, group II and group III geothermal water samples were identified as the partially equilibrated water, whose temperature of the geothermal reservoir can be calculated based on the cation geothermometers. The ranges of the calculated temperature of the shallow strata and the deep strata are 91~146°C and 147~176°C, respectively. It has the good results obtained with some cation geothermometers in a geothermal system hosted in carbonate rocks like the studied area. The analysis workflow and calculation data obtained in this work contribute to the evaluation of the temperature field and the exploration and development of the geothermal resources in the Bohai Bay Basin.


2020 ◽  
Vol 600 (1) ◽  
pp. 012036
Author(s):  
Wang Xue ◽  
Chi Bo

Abstract The Xujiaweizi fault depression is rich in natural gas resources in Lower Cretaceous and a major fault depression of the deep strata in northern Songliao Basin. In this study, the tight gas is coaliferous gas in the K1sh Formation of the Xujiaweizi Fault Depression. The methane carbon isotope value of tight gas is controlled by mature evolution. The cause of reversed sequence and partially reversed sequence of gas components carbon isotope is carbon isotope fractionation with hydrocarbon generation evolution of high-overmature stage source rock. The carbon isotope values of the low content components are obviously lighter with the increase of buried depth at the late stage of mature evolution. The carbon isotope values of adsorbed gas show similar characteristics, whether mudstone, carbargilite or coal in the same well. The tight gas reservoir is self-generation and self-accumulation gas reservoir by vertical diffusion and short distance migration in the K1sh Formation of the Xujiaweizi Fault Depression. It is important to study on the geochemical characteristics and the genesis of tight gas for guiding the exploration and deployment in the future.


2020 ◽  
Vol 9 (2) ◽  
pp. 1-11
Author(s):  
Shuang You ◽  
Chenghan Zhang ◽  
Hongguang Ji
Keyword(s):  

2020 ◽  
Vol 34 (6) ◽  
pp. 6799-6810 ◽  
Author(s):  
Meng Wang ◽  
Guangyou Zhu ◽  
Alexei V. Milkov ◽  
Linxian Chi
Keyword(s):  

2020 ◽  
Author(s):  
Dongzhao An

<p>In Early Cretaceous, Shahezi Formation developed in syn-rift stage which belongs to the deep strata of the Songliao Basin, China. Due to the poor outcrop development, there is no previous study or report on the provenance of detrital zircons from Shahezi Formation before. The Songke 2 well is a part of Songliao Basin drilling project which belongs to the International Continental Scientific Drilling Projects (ICDP). The conduct of this scientific drilling is to obtain a nearly complete Cretaceous terrestrial sedimentary record, as determined from basin-filling history. Therefore, this research will focus on the sample from Songke 2 well. This study based on continuous and complete sampling which are unique research materials. What’s more, Songliao Basin is one of the largest continental sedimentary basins in the world, which holds the most important reserves of Chinese oil and natural gas. Consequently, this study is a kind of significance for oil and natural gas prospects of deep strata in Songliao Basin.</p><p>Through the detailed description about cores, fan delta facies and lacustrine facies can be identified in this study. Also, the detailed information and sedimentary environment at Early Cretaceous can be clarified. The upper member of Shahezi formation shows the characteristics of fan delta facies intersecting shore-shallow lakes, reflecting the multistage cyclicity changes under the sufficient source supply during the syn-rift stage. In order to define the provenance of the upper member of Shahezi Formation in the north-central area of the Songliao Basin, five sandstone sample (DZ01~05) of the upper member of Shahezi Formation were continuous sampling from Songke 2 well. U-Pb dating was performed on detrital zircons separated from the five sandstone samples. Detrital zircons from DZ01 to DZ05 has dominant ages of 105~140 Ma (268 grains), 155~200 Ma (160 grains), and 220~260 Ma (44 grains). This paper demonstrates that the provenance of the upper member of Shahezi Formation is came from the Central Great Xing’an Range. The depositional period of the Shahezi Formation constraints of maximum sedimentary age and reached to 111-115 Ma. At the same time, the Great Xing’an Range also provides sediments for the western Hailar Basin, which indicates that the Great Xing’an Range uplift and denudation during this period. The closure and collision of the Mongolia-Okhotsk ocean to the north and Pacific Plate subduction beneath the Asian continent to the east were the major tectonic events affecting the tectonic environment of the Great Xing’an Range.</p>


Sign in / Sign up

Export Citation Format

Share Document