excitation field
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 17)

H-INDEX

9
(FIVE YEARS 2)

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7725
Author(s):  
Martin Klein ◽  
Daniel Erni ◽  
Dirk Rueter

Magnetic induction tomography (MIT) is a contactless, low-energy method used to visualize the conductivity distribution inside a body under examination. A particularly demanding task is the three-dimensional (3D) imaging of voluminous bodies in the biomedical impedance regime. While successful MIT simulations have been reported for this regime, practical demonstration over the entire depth of weakly conductive bodies is technically difficult and has not yet been reported, particularly in terms of more realistic requirements. Poor sensitivity in the central regions critically affects the measurements. However, a recently simulated MIT scanner with a sinusoidal excitation field topology promises improved sensitivity (>20 dB) from the interior. On this basis, a large and fast 3D MIT scanner was practically realized in this study. Close agreement between theoretical forward calculations and experimental measurements underline the technical performance of the sensor system, and the previously only simulated progress is hereby confirmed. This allows 3D reconstructions from practical measurements to be presented over the entire depth of a voluminous body phantom with tissue-like conductivity and dimensions similar to a human torso. This feasibility demonstration takes MIT a step further toward the quick 3D mapping of a low conductive and voluminous object, for example, for rapid, harmless and contactless thorax or lung diagnostics.


Author(s):  
Igor V. Bochkarev ◽  
Ivan V. Bryakin ◽  
Vadim R. Khramshin

2021 ◽  
Vol 255 ◽  
pp. 04004
Author(s):  
Roxana Tomescu ◽  
Florin Nita ◽  
Stefan Caramizoiu ◽  
Veronica Anastasoaie ◽  
Dana Cristea

The paper presents an extensive numerical analysis performed by three-dimensional (3D) simulations using the finite difference in time and space (FDTD) method to identify the optimal geometry, size and configuration of the nano-antennas that constitute a plasmonic metasurface. The aim was to achieve the highest resonance at various wavelengths (NIR-VIS), for local enhancement of the excitation field and collection efficiency of emitted photons. We investigated ten different types of metals, two shapes (disks and U-shape resonators) and various geometrical parameters for the nanoresonators composing the metasurface. The best results for Rhodamine 6G excitation and emission were obtained using silver resonators with 105 nm diameter of the cylinder elements in a rectangular array with a 110 nm period, and with 110 nm long U-shape placed at a period of 40 nm.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2506
Author(s):  
Zhongzhou Du ◽  
Dandan Wang ◽  
Yi Sun ◽  
Yuki Noguchi ◽  
Shi Bai ◽  
...  

The Fokker–Planck equation accurately describes AC magnetization dynamics of magnetic nanoparticles (MNPs). However, the model for describing AC magnetization dynamics of MNPs based on Fokker-Planck equation is very complicated and the numerical calculation of Fokker-Planck function is time consuming. In the stable stage of AC magnetization response, there are differences in the harmonic phase and amplitude between the stable magnetization response of MNPs described by Langevin and Fokker–Planck equation. Therefore, we proposed an empirical model for AC magnetization harmonics to compensate the attenuation of harmonics amplitude induced by a high frequency excitation field. Simulation and experimental results show that the proposed model accurately describes the AC M–H curve. Moreover, we propose a harmonic amplitude–temperature model of a magnetic nanoparticle thermometer (MNPT) in a high-frequency excitation field. The simulation results show that the temperature error is less than 0.008 K in the temperature range 310–320 K. The proposed empirical model is expected to help improve MNPT performance.


2020 ◽  
Author(s):  
Jaechan Jeong ◽  
Jinsun Kim ◽  
Beomsu Seo ◽  
Hans Krause ◽  
Hyobong Hong

Abstract We present a magnetic particle imaging (MPI) device using a Halbach cuboid magnet and frequency mixing magnetic detection (FMMD) technology. A Field Free Line was formed in the center of a two-piece Halbach cuboid. Then, the cuboid was moved in the sample volume in a T-shaped and circular shape. The sample was exposed to a magnetic excitation field of two different frequencies. Due to the nonlinearity of the superparamagnetic iron oxide nanoparticles (SPIONs), harmonic frequencies and intermodulation products of the excitation frequencies are generated. This characteristic response signal from the particles was acquired by a coil system and demodulated by a FMMD electronics. Images were created by a backprojection method based on Radon and inverse Radon transformation. Using the Halbach cuboid, we were able to generate a stronger magnetic field compared to the previously reported equipment using large permanent magnets.. The results of the experiment showed that the combination of the Halbach cuboid and FMMD can acquire images similar to those of other existing MPI systems, suggesting that it is a method that has advantages in manufacturing and operation of MPI.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1623
Author(s):  
Yi Sun ◽  
Na Ye ◽  
Dandan Wang ◽  
Zhongzhou Du ◽  
Shi Bai ◽  
...  

The core size distribution is an important physical characteristic of magnetic nanoparticles (MNPs) because it seriously affects biomedical and biological applications. In this study, we proposed an improved method for estimating the distributions, which optimizes the excitation frequency based on AC susceptibility to avoid the effects of Brownian relaxation. Moreover, the first, third, and fifth magnetization harmonics under different excitation field strengths are used for estimating core size distributions to avoid measuring higher harmonics. The experiment results show that the improved AC harmonic method can accurately and quickly estimate the distribution of large core sizes compared with the method of static magnetization (M–H) curves, which is a competitive advantage in MNP immunoassays.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Dandan Ge ◽  
Sylvie Marguet ◽  
Ali Issa ◽  
Safi Jradi ◽  
Tien Hoa Nguyen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document