On the evolution of disturbances at an inviscid interface

1981 ◽  
Vol 108 ◽  
pp. 159-170 ◽  
Author(s):  
P. N. Shankar

The initial-value problem for the evolution of the interface η(x, t) separating two unbounded, inviscid streams is considered in the framework of linearized analysis. Given the initial shape y = εη0(x) of the interface at t = 0 the objective is to calculate the interface shape η(x,t) for later times. First, it is shown that, if the vortex sheet is of infinite extent, if surface tension is absent and if the two streams are of the same density, the evolution is given by \[ \eta(x,t) = \epsilon(1-\alpha)^{-1}{\rm Re}[\{(1-\alpha)+(1+\alpha)i\}\eta_0\{x-{\textstyle\frac{1}{2}}((1+\alpha)+(1-\alpha)i)t\}], \] where α (≠ 1) is the ratio of the speeds of the streams, provided the initial interface shape εη0(x) is analytic and its Fourier transform decays sufficiently rapidly. An interesting consequence is that it is possible, under certain circumstances, for the interface to develop singularities after a finite time. Next it is shown that when the two streams move at the same speed (α = 1) the growth of η is given by \[ \eta(x,t) = \epsilon\eta_0(x-t)+\epsilon t\,d\eta_0(x-t)/dx \] with mild restrictions on η0(x). The major effect of surface tension, it is found, is to prevent the occurrence of singularities after a finite time, a distinct possibility in its absence. Finally the vortex sheet shed by a semi-infinite flat plate is considered. The unsteady mixed boundary-value problem is formally solved by using parabolic coordinates and Fourier-Laplace transforms.

1982 ◽  
Vol 119 ◽  
pp. 507-532 ◽  
Author(s):  
D. I. Pullin

We consider the behaviour of an interface between two immiscible inviscid incompressible fluids of different density moving under the action of gravity, inertial and interfacial tension forces. A vortex-sheet model of the exact nonlinear two-dimensional motion of this interface is formulated which includes expressions for an appropriate set of integral invariants. A numerical method for solving the vortex-sheet initial-value equations is developed, and is used to study the nonlinear growth of finite-amplitude normal modes for both Kelvin-Helmholtz and Rayleigh-Taylor instability. In the absence of an interfacial or surface-tension term in the integral-differential equation that describes the evolution of the circulation distribution on the vortex sheet, it is found that chaotic motion of, or the appearance of curvature singularities in, the discretized interface profiles prevent the simulations from proceeding to the late-time highly nonlinear phase of the motion. This unphysical behaviour is interpreted as a numerical manifestation of possible ill-posedness in the initial-value equations equivalent to the infinite growth rate of infinitesimal-wavelength disturbances in the linearized stability theory. The inclusion of an interfacial tension term in the circulation equation (which stabilizes linearized short-wavelength perturbations) was found to smooth profile irregularities but only for finite times. While coherent interfacial motion could then be followed well into the nonlinear regime for both the Kelvin-Helmholtz and Rayleigh-Taylor modes, locally irregular behaviour eventually reappeared and resisted subsequent attempts at numerical smoothing or suppression. Although several numerical and/or physical mechanisms are discussed that might produce irregular behaviour of the discretized interface in the presence of an interfacial-tension term, the basic cause of this instability remains unknown. The final description of the nonlinear interface motion thus awaits further research.


Author(s):  
P. F. Rhodes-Robinson

AbstractIn this paper various wave motions in water of infinite depth containing vertical porous boundaries are determined when the water is of infinite extent on one or both sides. Initially surface tension is ignored and simple solutions for incident waves are obtained before going on to harder wave source and wave-maker solutions. A reduction method is developed to obtain solutions for two-sided boundaries from those for one-sided, which are obtained by standard techniques. The effect of surface tension that precludes simple solutions is also considered, although a present lack of information on dynamical edge behaviour for porous boundaries means that the formal mathematical solutions must be left in terms of arbitrary edge constants. In conclusion, some solutions are noted for finite depth.


2008 ◽  
Vol 18 (4) ◽  
pp. 463-484 ◽  
Author(s):  
F. de la Hoz ◽  
M. A. Fontelos ◽  
L. Vega

2019 ◽  
Vol 29 (7) ◽  
pp. 629-654
Author(s):  
Zehao Feng ◽  
Shangqing Tong ◽  
Chenglong Tang ◽  
Cheng Zhan ◽  
Keiya Nishida ◽  
...  

2018 ◽  
Author(s):  
Timothy Duignan ◽  
Marcel Baer ◽  
Christopher Mundy

<div> <p> </p><div> <div> <div> <p>The surface tension of dilute salt water is a fundamental property that is crucial to understanding the complexity of many aqueous phase processes. Small ions are known to be repelled from the air-water surface leading to an increase in the surface tension in accordance with the Gibbs adsorption isotherm. The Jones-Ray effect refers to the observation that at extremely low salt concentration the surface tension decreases in apparent contradiction with thermodynamics. Determining the mechanism that is responsible for this Jones-Ray effect is important for theoretically predicting the distribution of ions near surfaces. Here we show that this surface tension decrease can be explained by surfactant impurities in water that create a substantial negative electrostatic potential at the air-water interface. This potential strongly attracts positive cations in water to the interface lowering the surface tension and thus explaining the signature of the Jones-Ray effect. At higher salt concentrations, this electrostatic potential is screened by the added salt reducing the magnitude of this effect. The effect of surface curvature on this behavior is also examined and the implications for unexplained bubble phenomena is discussed. This work suggests that the purity standards for water may be inadequate and that the interactions between ions with background impurities are important to incorporate into our understanding of the driving forces that give rise to the speciation of ions at interfaces. </p> </div> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document