Abstract
Acoustic waves are ubiquitous in human everyday experience, therefore, precise control over the deformation of acoustic waves is always extremely desirable, which can be used, for example, to transform or hide objects from incident waves. Acoustic illusion devices are generally implemented by transformation acoustics, which can deceive ears or sonar systems. Challenges remain, the complexed and extreme material parameters prescribed by coordinate transformation theory make the implementations particularly difficult, even with the help of acoustic metamaterials. Here, a novel method based on Fabry-Perot resonances offers a feasible solution for achieve three-dimensional (3D) omnidirectional passive acoustic illusion. We theoretically demonstrated perfect 3D acoustic illusion via Mie theory, reduced version is further designed numerically and implemented experimentally. In the future, our work opens new possibilities for the implementation of modern acoustic illusion devices, such as camouflage for anti-sonar detection.