Vortex shedding from a rectangular prism and a circular cylinder placed vertically in a turbulent boundary layer

1983 ◽  
Vol 126 ◽  
pp. 147-165 ◽  
Author(s):  
Hiroshi Sakamoto ◽  
Mikio Arie

Measurements of the vortex-shedding frequency behind a vertical rectangular prism and a vertical circular cylinder attached to a plane wall are correlated with the characteristics of the smooth-wall turbulent boundary layer in which they are immersed. Experimental data were collected to investigate the effects of (i) the aspect ratio of these bodies and (ii) the boundary-layer characteristics on the vortex-shedding frequency. The Strouhal number for the rectangular prism and the circular cylinder, defined by S = fcw/U0 and fcd/U0 respectively, was found to be expressed by a power function of the aspect ratio h/w (or h/d). Here fc is the vortex-shedding frequency, U0 is the free-stream velocity, h is the height, w is the width and d is the diameter. As the aspect ratio is reduced, the type of vortex shedding behind each of the two bodies was found to change from the Karman-type vortex to the arch-type vortex at the aspect ratio of 2·0 for the rectangular prism and 2·5 for the circular cylinder.

1983 ◽  
Vol 105 (1) ◽  
pp. 98-104 ◽  
Author(s):  
H. Sakamoto ◽  
M. Arie

An experimental investigation was carried out on the flow around a normal plate of finite width mounted on a smooth plane wall along which a turbulent boundary layer was fully developed. Experimental data were collected to investigate the effects of (1) the aspect ratio of the plate (2) the parameters characterizing the boundary-layer on the pressure drag and the vortex shedding frequency. The pressure drag coefficient of the plate defined by CDτ = D/(1/2ρuτ2hw) was found to be expressed by a power function of huτ/ν in the range h/δ<1.0 for each aspect ratio w/h, where D is the pressure drag, uτ is the shear velocity, ρ is the density of fluid, h and w are the height and the width of the plate, respectively, ν is the kinematic viscosity, δ is the thickness of the boundary layer. Also, the Strouhal number for the plate defined by St =fc • w/ U0 was found to be expressed by a power function of the aspect ratio w/h in the range of h/δ less than about 1.0, where fc is the vortex shedding frequency, U0 is the free-stream velocity. As the aspect ratio was reduced, the type of vortex shedding behind the plate was found to change from the arch type to the Karman type at the aspect ratio of about 0.8.


Author(s):  
Eric D’herde ◽  
Laila Guessous

Flow over a cylinder is a fundamental fluid mechanics problem that involves a simple geometry, yet increasingly complex flow patterns as the Reynolds number is increased, most notably the development of a Karman vortex with a natural vortex shedding frequency fs when the Reynolds number exceeds a value of about 40. The goal of this ongoing study is to numerically investigate the effect of an incoming free-stream velocity pulsation with a mean Reynolds number of 100 on the drag force over and vorticity dynamics behind a circular cylinder. This paper reports on initial results involving unsteady, laminar and incompressible flows over a circular cylinder. Sinusoidal free-stream pulsations with amplitudes Av varying between 25% and 75% of the mean free-stream velocity and frequencies f varying between 0.25 and 5 times the natural shedding frequency were considered. Of particular interest to us is the interaction between the pulsating frequency and natural vortex shedding frequency and the resulting effects on drag. Interestingly, at frequencies close to the natural frequency, and to twice the natural frequency, a sudden drop in the mean value of the drag coefficient is observed. This drop in the drag coefficient is also accompanied by a change in the flow and vortex shedding patterns observed behind the cylinder.


Author(s):  
Eric D’herde ◽  
Laila Guessous

Flow over a cylinder is a fundamental fluid mechanics problem that involves a simple geometry, yet increasingly complex flow patterns as the Reynolds number is increased, most notably the development of a Karman vortex with a natural vortex shedding frequency when the Reynolds number exceeds a value of about 40. The goal of this ongoing study is to numerically investigate the effect of an incoming free-stream velocity pulsation with a mean Reynolds number of 100 on the drag and lift forces over and vorticity dynamics behind a circular cylinder. This paper reports on initial results involving unsteady, laminar and incompressible flows over a circular cylinder. Sinusoidal free-stream pulsations with amplitudes Av varying between 25% and 75% of the mean free-stream velocity and frequencies varying between 0.25 and 5 times the natural shedding frequency fs were considered. Of particular interest to us is the interaction between the pulsating frequency and natural vortex shedding frequency and the resulting effects on drag. Interestingly, at frequencies close to the natural frequency, and to twice the natural frequency, a sudden drop in the mean value of the drag coefficient is observed. The first drop in the drag coefficient, i.e. near f = fs, is also accompanied by a change in the flow and vortex shedding patterns observed behind the cylinder. This change in vortex shedding pattern manifests itself as a departure from symmetrical shedding, and in a non-zero mean lift coefficient value. The second drop, i.e. near f = 2 fs, has similar characteristics, except that the mean lift coefficient remains at zero.


2007 ◽  
Vol 23 (2) ◽  
pp. 107-116 ◽  
Author(s):  
J. K. Tu ◽  
J. J. Miau ◽  
Y. J. Wang ◽  
G. B. Lee ◽  
C. Lin

AbstractExperiments were made with 14 MEMS sensors situated along the span of a circular cylinder whose aspect ratio was 5. The signals of the MEMS sensors were sampled simultaneously as flow over the cylinder at Reynolds numbers of 104. The results of Wavelet analysis of the signals indicate that the percentage of time during which strong three-dimensionality of vortex shedding was detected is about 10%.As noted, strong three-dimensionality took place when the fluctuating amplitude of the signals was severely modulated and the vortex shedding frequency reduced appeared abnormally high or low. Further noted was that the addition of a splitter plate of 0.5 or one diameter in length behind the circular cylinder was not able to suppress the three-dimensionality of the flow.


1984 ◽  
Vol 106 (1) ◽  
pp. 70-78 ◽  
Author(s):  
A. J. Grass ◽  
P. W. J. Raven ◽  
R. J. Stuart ◽  
J. A. Bray

The paper summarizes the results of a laboratory study of the separate and combined effects of bed proximity and large velocity gradients on the frequency of vortex shedding from pipeline spans immersed in the thick boundary layers of tidal currents. This investigation forms part of a wider project concerned with the assessment of span stability. The measurements show that in the case of both sheared and uniform approach flows, with and without velocity gradients, respectively, the Strouhal number defining the vortex shedding frequency progressively increases as the gap between the pipe base and the bed is reduced below two pipe diameters. The maximum increase in vortex shedding Strouhal number, recorded close to the bed in an approach flow with large velocity gradients, was of the order of 25 percent.


Author(s):  
Junxiang Shi ◽  
Steven R. Schafer ◽  
Chung-Lung (C. L. ) Chen

A passive, self-agitating method which takes advantage of vortex-induced vibration (VIV) is presented to disrupt the thermal boundary layer and thereby enhance the convective heat transfer performance of a channel. A flexible cylinder is placed at centerline of a channel. The vortex shedding due to the presence of the cylinder generates a periodic lift force and the consequent vibration of the cylinder. The fluid-structure-interaction (FSI) due to the vibration strengthens the disruption of the thermal boundary layer by reinforcing vortex interaction with the walls, and improves the mixing process. This novel concept is demonstrated by a three-dimensional modeling study in different channels. The fluid dynamics and thermal performance are discussed in terms of the vortex dynamics, disruption of the thermal boundary layer, local and average Nusselt numbers (Nu), and pressure loss. At different conditions (Reynolds numbers, channel geometries, material properties), the channel with the VIV is seen to significantly increase the convective heat transfer coefficient. When the Reynolds number is 168, the channel with the VIV improves the average Nu by 234.8% and 51.4% in comparison with a clean channel and a channel with a stationary cylinder, respectively. The cylinder with the natural frequency close to the vortex shedding frequency is proved to have the maximum heat transfer enhancement. When the natural frequency is different from the vortex shedding frequency, the lower natural frequency shows a higher heat transfer rate and lower pressure loss than the larger one.


1990 ◽  
Vol 112 (2) ◽  
pp. 243-245 ◽  
Author(s):  
D. E. Paxson ◽  
R. E. Mayle

Velocity measurements in the laminar boundary layer around the forward portion of a circular cylinder are presented. These results are compared to Blasius’ theory for laminar flow around a cylinder using a free-stream velocity distribution obtained from static pressure measurements on the cylinder. Even though the flow is periodically unsteady as a result of vortex shedding from the cylinder, it is found that the agreement is excellent.


Sign in / Sign up

Export Citation Format

Share Document