Velocity Measurements on the Forward Portion of a Cylinder

1990 ◽  
Vol 112 (2) ◽  
pp. 243-245 ◽  
Author(s):  
D. E. Paxson ◽  
R. E. Mayle

Velocity measurements in the laminar boundary layer around the forward portion of a circular cylinder are presented. These results are compared to Blasius’ theory for laminar flow around a cylinder using a free-stream velocity distribution obtained from static pressure measurements on the cylinder. Even though the flow is periodically unsteady as a result of vortex shedding from the cylinder, it is found that the agreement is excellent.

1983 ◽  
Vol 126 ◽  
pp. 147-165 ◽  
Author(s):  
Hiroshi Sakamoto ◽  
Mikio Arie

Measurements of the vortex-shedding frequency behind a vertical rectangular prism and a vertical circular cylinder attached to a plane wall are correlated with the characteristics of the smooth-wall turbulent boundary layer in which they are immersed. Experimental data were collected to investigate the effects of (i) the aspect ratio of these bodies and (ii) the boundary-layer characteristics on the vortex-shedding frequency. The Strouhal number for the rectangular prism and the circular cylinder, defined by S = fcw/U0 and fcd/U0 respectively, was found to be expressed by a power function of the aspect ratio h/w (or h/d). Here fc is the vortex-shedding frequency, U0 is the free-stream velocity, h is the height, w is the width and d is the diameter. As the aspect ratio is reduced, the type of vortex shedding behind each of the two bodies was found to change from the Karman-type vortex to the arch-type vortex at the aspect ratio of 2·0 for the rectangular prism and 2·5 for the circular cylinder.


Author(s):  
Eric D’herde ◽  
Laila Guessous

Flow over a cylinder is a fundamental fluid mechanics problem that involves a simple geometry, yet increasingly complex flow patterns as the Reynolds number is increased, most notably the development of a Karman vortex with a natural vortex shedding frequency fs when the Reynolds number exceeds a value of about 40. The goal of this ongoing study is to numerically investigate the effect of an incoming free-stream velocity pulsation with a mean Reynolds number of 100 on the drag force over and vorticity dynamics behind a circular cylinder. This paper reports on initial results involving unsteady, laminar and incompressible flows over a circular cylinder. Sinusoidal free-stream pulsations with amplitudes Av varying between 25% and 75% of the mean free-stream velocity and frequencies f varying between 0.25 and 5 times the natural shedding frequency were considered. Of particular interest to us is the interaction between the pulsating frequency and natural vortex shedding frequency and the resulting effects on drag. Interestingly, at frequencies close to the natural frequency, and to twice the natural frequency, a sudden drop in the mean value of the drag coefficient is observed. This drop in the drag coefficient is also accompanied by a change in the flow and vortex shedding patterns observed behind the cylinder.


Author(s):  
Eric D’herde ◽  
Laila Guessous

Flow over a cylinder is a fundamental fluid mechanics problem that involves a simple geometry, yet increasingly complex flow patterns as the Reynolds number is increased, most notably the development of a Karman vortex with a natural vortex shedding frequency when the Reynolds number exceeds a value of about 40. The goal of this ongoing study is to numerically investigate the effect of an incoming free-stream velocity pulsation with a mean Reynolds number of 100 on the drag and lift forces over and vorticity dynamics behind a circular cylinder. This paper reports on initial results involving unsteady, laminar and incompressible flows over a circular cylinder. Sinusoidal free-stream pulsations with amplitudes Av varying between 25% and 75% of the mean free-stream velocity and frequencies varying between 0.25 and 5 times the natural shedding frequency fs were considered. Of particular interest to us is the interaction between the pulsating frequency and natural vortex shedding frequency and the resulting effects on drag. Interestingly, at frequencies close to the natural frequency, and to twice the natural frequency, a sudden drop in the mean value of the drag coefficient is observed. The first drop in the drag coefficient, i.e. near f = fs, is also accompanied by a change in the flow and vortex shedding patterns observed behind the cylinder. This change in vortex shedding pattern manifests itself as a departure from symmetrical shedding, and in a non-zero mean lift coefficient value. The second drop, i.e. near f = 2 fs, has similar characteristics, except that the mean lift coefficient remains at zero.


Author(s):  
Efstathios Konstantinidis

The fundamental understanding of the added mass phenomenon associated with the motion of a solid body relative to a fluid is revisited. This paper focuses on the two-dimensional flow around a circular cylinder oscillating transversely in a free stream. A virtual experiment reveals that the classical approach to this problem leads to a paradox. The inertial force is derived afresh based on analysis of the motion in a frame of reference attached to the cylinder centroid, which overcomes the paradox in the classical formulation. It is shown that the inertial force depends not only on the acceleration of the cylinder per se , but also on the relative motion between body and fluid embodied in a parameter called alpha, α , which represents the ratio of the maximum transverse velocity of the cylinder to the free-stream velocity; the induced inertial force is directionally varying and non-harmonic in time depended on the alpha parameter. It is further shown that the component of the inertial force in the transverse direction is negligible for α <0.1, increases quadratically for α <0.5, and tends asymptotically to the classical result as , i.e. in still fluid.


1976 ◽  
Vol 98 (2) ◽  
pp. 249-255 ◽  
Author(s):  
H. Miyazaki ◽  
E. M. Sparrow

A closed-form solution has been obtained for the potential flow about a circular cylinder situated in an impinging slot jet. Among other results, the potential flow solution yields the free stream velocity for the boundary layer adjacent to the cylinder surface. A basic feature of the solution is the division of the flow field into subdomains, thereby making it possible to employ harmonic functions that are appropriate to each such subdomain. The boundary conditions on the free streamline and the conditions of continuity between the subdomains are satisfied by a combination of least squares and point matching constraints. Numerical evaluation of the solution was carried out for cylinder diameters greater or equal to the nozzle width and for a range of dimensionless separation distances between the nozzle and the impingement surface. Results are presented for the velocity and pressure distributions on the cylinder surface, for the position of the free streamline, and for the velocity gradients at the stagnation point. The latter serve as input information to the Nusselt number and skin friction expressions that are given by boundary layer theory. Comparisons were made with available experimental results for the pressure distribution, velocity gradient, and Nusselt number, and good agreement was found to prevail in the stagnation region.


This paper considers the two-dimensional flow past a circular cylinder immersed in a uniform stream, when the cylinder rotates about its axis so fast that separation in suppressed. The solution of the flow in the boundary layer on the cylinder is obtained in the form of a power series in the ratio of the stream velocity to the cylinder's peripheral velocity, and expressions are deduced for the value of the circulation and the torque on the cylinder. The terms calculated explicitly are sufficient to give reliable numerical values over the whole range of rotational speeds for which the postulate of non-separating flow is justifiable. The previously accepted theory, due to Prandtl, predicted that the circulation should not exceed a certain limit, while the present theory indicates that the circulation increases indefinitely with increase of rotaional speed. Strong arguments against the older theory are put forward, but the experimental evidence available is inconclusive.


Author(s):  
Bruno S. Carmo ◽  
Rafael S. Gioria ◽  
Ivan Korkischko ◽  
Cesar M. Freire ◽  
Julio R. Meneghini

Two- and three-dimensional simulations of the flow around straked cylinders are presented. For the two-dimensional simulations we used the Spectral/hp Element Method, and carried out simulations for five different angles of rotation of the cylinder with respect to the free stream. Fixed and elastically-mounted cylinders were tested, and the Reynolds number was kept constant and equal to 150. The results were compared to those obtained from the simulation of the flow around a bare cylinder under the same conditions. We observed that the two-dimensional strakes are not effective in suppressing the vibration of the cylinders, but also noticed that the responses were completely different even with a slight change in the angle of rotation of the body. The three-dimensional results showed that there are two mechanisms of suppression: the main one is the decrease in the vortex shedding correlation along the span, whilst a secondary one is the vortex wake formation farther downstream.


1967 ◽  
Vol 29 (4) ◽  
pp. 691-703 ◽  
Author(s):  
J. R. Calvert

The wake of a disk at an angle to a stream contains marked periodic motions which arise from the regular shedding of vortices from the trailing edge. The vortices are in the form of a chain of irregular rings, each one linked to the succeeding one, and they move downstream at about 0·6 of free-stream velocity. The prominence of the vortex shedding increases as the angle of incidence (measured from the normal) increases up to at least 50°. The shedding frequency increases with the angle of incidence, but by a suitable choice of reference velocity and length scale, may be described by a wake Strouhal number which has the constant value 0·21 for all angles of incidence above zero, up to at least 40°.Axially-symmetric bodies at zero incidence shed vortices in a similar manner, except that the orientation of the plane of vortex shedding is not fixed and varies from time to time.


Sign in / Sign up

Export Citation Format

Share Document