Volume 8A: Heat Transfer and Thermal Engineering
Latest Publications


TOTAL DOCUMENTS

96
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791849552

Author(s):  
McDonald A. Fawcett ◽  
Jobaidur R. Khan

The injection of a water/methanol mixture into the intake airflow of turbocharged street racing vehicles has long been known to increase the power and performance, though actual data proves difficult to obtain. In an attempt to maximize the power output of a twin-turbocharged Porsche engine, a water/methanol mixture is introduced into the intake airflow. The injection decreased the temperature and increased the density of the intake air while increasing the compression ratio of the cylinder beyond the effects of the turbocharger itself. The real-time data was used to do the analysis. In an attempt to maximize the power enhancement, the injection parameters are modified. The vehicle sensors were used to obtain temperatures of the intake air, exhaust air, and the engine coolant. The fuel flow rate, air flow rate, mixture flow rate, and manifold pressure in conjunction with temperature measurements was used to determine the mass flow rate of the system. The properties of the mixture components were used to determine the work created by the system, which in turn leads to the power output of the system. Determining the power enhancement created by the water/methanol injection, and potentially maximizing its effect is the focus of this work.


Author(s):  
Koyu Satoh ◽  
Naian Liu ◽  
Xiaodong Xie ◽  
Wei Gao

The number of huge oil storage tanks is increasing in the world. If a fire occurs in one of these tanks, it is very difficult to suppress. Additionally, if a fire whirl occurs in an oil tank fire, it is extremely dangerous for firefighters to extinguish the fire. The authors have numerically studied huge fire whirls in a large oil tank depot and predicted the generation of those fire whirls. Here, another study is attempted to clarify the details of huge fire whirl in a large oil tank, using two kinds of fire whirl generation channels in CFD simulations using the software, FDS by NIST. Details of burning rates, velocities of whirling flames, radiative heat flux, heat release rates and whirling cycles are examined, using oil tanks with the diameters of 0.2 to 80 m. In oil tanks with a diameter of 80 m, a tall fire whirl is generated. The height is about 1000 m. In this study of oil tanks fires with small to large diameters, it has been found that fire whirl lengths are about 8 to 11 times of the oil tank diameter. The maximum radiative heat flux due to a fire whirl in 80 m diameter oil tanks exceeds 100 kW/m2. Since the maximum radiation is found at twice the distance of oil tank diameters from the tank centers, adjacent oil tanks may be ignited. This study has also examined a method used to prevent fire whirl generation in huge oil tanks.


Author(s):  
Foad Hassaninejadfarahani ◽  
Scott Ormiston

Laminar film condensation is an important phenomenon which occurs in numerous industrial applications such as refrigeration, chemical processing, and thermal power generation industries. It is well known that film condensation heat transfer is greatly reduced in the presence of a non-condensing gas. The present work performs a numerical analysis of the steady-state, laminar film condensation from a vapour-gas mixture in vertical parallel plate channels to demonstrate a computer model that could assist engineering analysts designing systems involving these phenomena. The present model has three new aspects relative to other current work. First, the complete elliptic two-dimensional governing equations are solved in both phases. Thus, the entire channel domain is solved rather than using an approach that marches along the channel from inlet to a prescribed length. Second, a dynamically determined sharp interface is used between the phases. This sharp interface is determined during the solution on a non-orthogonal structured mesh. Third, the governing equations are solved in a fully-coupled approach. The equations for two velocities, pressure, temperature, and gas mass fraction are solved in a coupled method simultaneously for both phases. Discretisation has been done based on a finite volume method and a co-located variable storage scheme. An in-house computer code was developed to implement the numerical solution scheme. Detailed results are presented for laminar film condensation from steam-air mixtures flowing in vertical parallel-plate channels. The results include velocity and pressure profiles, as well as axial variations of film thickness, Nusselt number and interface gas mass fraction. Detailed comparisons are made with results from a parabolic solution approach.


Author(s):  
Junxiang Shi ◽  
Steven R. Schafer ◽  
Chung-Lung (C. L. ) Chen

A passive, self-agitating method which takes advantage of vortex-induced vibration (VIV) is presented to disrupt the thermal boundary layer and thereby enhance the convective heat transfer performance of a channel. A flexible cylinder is placed at centerline of a channel. The vortex shedding due to the presence of the cylinder generates a periodic lift force and the consequent vibration of the cylinder. The fluid-structure-interaction (FSI) due to the vibration strengthens the disruption of the thermal boundary layer by reinforcing vortex interaction with the walls, and improves the mixing process. This novel concept is demonstrated by a three-dimensional modeling study in different channels. The fluid dynamics and thermal performance are discussed in terms of the vortex dynamics, disruption of the thermal boundary layer, local and average Nusselt numbers (Nu), and pressure loss. At different conditions (Reynolds numbers, channel geometries, material properties), the channel with the VIV is seen to significantly increase the convective heat transfer coefficient. When the Reynolds number is 168, the channel with the VIV improves the average Nu by 234.8% and 51.4% in comparison with a clean channel and a channel with a stationary cylinder, respectively. The cylinder with the natural frequency close to the vortex shedding frequency is proved to have the maximum heat transfer enhancement. When the natural frequency is different from the vortex shedding frequency, the lower natural frequency shows a higher heat transfer rate and lower pressure loss than the larger one.


Author(s):  
Braden Czapla ◽  
Yi Zheng ◽  
Karthik Sasihithlu ◽  
Arvind Narayanaswamy

Near-field effects in radiative transfer refer to the collective influence of interference, diffraction, and tunneling of electro-magnetic waves on energy transfer between two or more objects. Most studies of near-field radiative transfer have so far focused on the enhancement due to tunneling of surface polaritons. In this work, we show the existence of sharp peaks in the radiative transfer spectrum between two spheres of polar materials that are not due to surface polaritons. The peaks, which are present on either side of the restrahlen band, are because of Mie resonances.


Author(s):  
Mahbub Ahmed ◽  
Cheng Zhang ◽  
Scott McKay ◽  
Vivek Shirsat ◽  
Jobaidur Khan

Hydrocarbon-based miniature power generators are promising any many application since hydrocarbon based fuels have higher power densities compared to conventional lithium batteries. A 40mm long meso-combustor of two different configurations, two-inlet and three-inlet, were used to investigate the combustion of methane in the meso-chamber. A non-premixed combustion of methane and oxygen was simulated numerically using a steady laminar flamelet model. The mesh generation and the CFD simulation were performed using ANSYS FLUENT software. A a finite volume approach was used for the simulation. The fuel-oxidizer mixing, thermal behavior and fuel burning efficiency were studied. An adequate mixing that supports the combustion was observed in certain locations. The exhaust gas was analyzed experimentally. The temperature distributions were also observed to predict the flame locations. According to the numerical analysis it was apparent that the flame would be anchored in the well mixed regions of the chamber the flames were found to be attached in two distinct locations. One in the upstream zone and the other one in the downstream zone. Another important finding was that the fuel lean condition produced higher efficiency than the fuel rich condition.


Author(s):  
Celso Almeida ◽  
António A. Nunes ◽  
Senhorinha Teixeira ◽  
José Carlos Teixeira ◽  
Pedro Lobarinhas

Ventilation of wide spaces often requires a correct mixing of a jet in a cross flow. The present paper describes the application of Computational Fluid Dynamics (CFD) to model the interaction of a free stream jet with a cross flow, taking into account temperature gradients between the two streams. The model uses the finite volume technique for solving the conservation equations of fluid: mass, momentum and energy. Buoyancy is described by the Boussinesq approximation. The convergence of the solution required a high mesh refinement in the region of flow interaction. The data were compared with experimental results obtained in a subsonic wind tunnel. The experiments were carried out along the 4.0 m long test section of a 1.4×0.8 low speed wind tunnel. The jets were injected at 90° through orifices 25 mm in diameter drawn from a plenum either at the same or higher temperature the free stream. The jet velocity to the free stream velocity ratio was set at 8 for a single jet and between 4 and 16 for multiple injections. Data include velocity, pressure and temperature. The results show that the injection of relatively small cross-flow rates can cause the development of large regions of interaction with the main flux, accompanied by the creation of large scale flow structures, which contribute effectively to rapid mixing of the two streams. A CFD simulation of temperature showed that a jet 30 diameters downstream (30D) is an extension of the plume covering almost half of the cross section and a good homogeneity, then the extension of the plume 120D which covers almost the entire cross section and an optimum mixing occurs. The CFD simulation temperature of 13 jets showed that a toroidal extension of the plume and a good homogenization as early as 30D downstream of the injection point, occurs.


Author(s):  
Matthew C. Morrison ◽  
Kenneth J. Bateman

The transfer and storage of molten salts are being examined to support electrorefining operations at the Idaho National Laboratory. Two important factors that will need to be considered when removing molten salt from either of the two electrorefiners are (1) how to remove salt in a safe and timely manner and (2) how to store significant amounts of electrorefiner salt. A Vacuum Induced Salt Transfer and Storage (VISTAS) system is being evaluated to address these two important factors. This process draws a vacuum in a container through the use of a venturi vacuum pump. The end of a heated drawtube is inserted into the molten salt bath and the molten salt is pulled into the container. A redundant level switch triggered both by the thermal conductivity of the salt and a preset temperature threshold then activates a solenoid, which turns off the argon supply to the venturi vacuum pump, stopping the flow of molten salt. A cooling coil is incorporated into the salt transfer equipment design as a failsafe if the level switch was to fail. A full-scale version of the conceptual design (43 kg capacity) was fabricated to test the vacuum draw salt withdrawal method in an inert argon atmosphere glovebox. In addition, a custom molten salt furnace was designed and fabricated within the glovebox to represent the actual size of an electrorefiner port. Initial testing of the VISTAS system was very successful. The salt was transferred at a consistent rate and the level switch reliably stopped flow. Because the system has a failsafe cooling mechanism, it is considered to have low risk of a salt spill. The container was found to improve storage density, reduce the diffusion of moisture, and reduce material surface area when compared to current options. This system appears to be well suited for this application and further development is recommended.


Author(s):  
Noris Gallandat ◽  
J. Rhett Mayor

This paper presents a numerical model assessing the potential of ionic wind as a heat transfer enhancement method for the cooling of grid distribution assets. Distribution scale power routers (13–37 kV, 1–10 MW) have stringent requirements regarding lifetime and reliability, so that any cooling technique involving moving parts such as fans or pumps are not viable. Increasing the air flow — and thereby enhancing heat transfer — through Corona discharge could be an attractive solution to the thermal design of such devices. In this work, the geometry of a rectangular, vertical channel with a corona electrode at the entrance is considered. The multiphysics problem is characterized by a set of four differential equations: the Poisson equation for the electric field and conservation equations for electric charges, momentum and energy. The electrodynamics part of the problem is solved using a finite difference approximation (FDA). Solutions for the potential, electric field and free charge density are presented for a rectangular control volume with mixed boundary conditions.


Author(s):  
James E. O’Brien ◽  
Piyush Sabharwall ◽  
SuJong Yoon

A new high-temperature multi-fluid, multi-loop test facility for advanced nuclear applications is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Molten salts have been identified as excellent candidate heat transport fluids for primary or secondary coolant loops, supporting advanced high temperature and small modular reactors (SMRs). Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed. A preliminary design configuration will be presented, with the required characteristics of the various components. The loop will utilize advanced high-temperature compact printed-circuit heat exchangers (PCHEs) operating at prototypic intermediate heat exchanger (IHX) conditions. The initial configuration will include a high-temperature (750°C), high-pressure (7 MPa) helium loop thermally integrated with a molten fluoride salt (KF-ZrF4) flow loop operating at low pressure (0.2 MPa) at a temperature of ∼450°C. Experiment design challenges include identification of suitable materials and components that will withstand the required loop operating conditions. Corrosion and high temperature creep behavior are major considerations. The facility will include a thermal energy storage capability designed to support scaled process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will also provide important data for code verification and validation (V&V) related to these systems.


Sign in / Sign up

Export Citation Format

Share Document