scholarly journals Numerical investigation of boundary layer effects on vortex shedding frequency and forces acting upon marine pipeline

2010 ◽  
Vol 32 (4) ◽  
pp. 460-470 ◽  
Author(s):  
M.H. Kazeminezhad ◽  
A. Yeganeh-Bakhtiary ◽  
A. Etemad-Shahidi
1984 ◽  
Vol 106 (1) ◽  
pp. 70-78 ◽  
Author(s):  
A. J. Grass ◽  
P. W. J. Raven ◽  
R. J. Stuart ◽  
J. A. Bray

The paper summarizes the results of a laboratory study of the separate and combined effects of bed proximity and large velocity gradients on the frequency of vortex shedding from pipeline spans immersed in the thick boundary layers of tidal currents. This investigation forms part of a wider project concerned with the assessment of span stability. The measurements show that in the case of both sheared and uniform approach flows, with and without velocity gradients, respectively, the Strouhal number defining the vortex shedding frequency progressively increases as the gap between the pipe base and the bed is reduced below two pipe diameters. The maximum increase in vortex shedding Strouhal number, recorded close to the bed in an approach flow with large velocity gradients, was of the order of 25 percent.


Author(s):  
Junxiang Shi ◽  
Steven R. Schafer ◽  
Chung-Lung (C. L. ) Chen

A passive, self-agitating method which takes advantage of vortex-induced vibration (VIV) is presented to disrupt the thermal boundary layer and thereby enhance the convective heat transfer performance of a channel. A flexible cylinder is placed at centerline of a channel. The vortex shedding due to the presence of the cylinder generates a periodic lift force and the consequent vibration of the cylinder. The fluid-structure-interaction (FSI) due to the vibration strengthens the disruption of the thermal boundary layer by reinforcing vortex interaction with the walls, and improves the mixing process. This novel concept is demonstrated by a three-dimensional modeling study in different channels. The fluid dynamics and thermal performance are discussed in terms of the vortex dynamics, disruption of the thermal boundary layer, local and average Nusselt numbers (Nu), and pressure loss. At different conditions (Reynolds numbers, channel geometries, material properties), the channel with the VIV is seen to significantly increase the convective heat transfer coefficient. When the Reynolds number is 168, the channel with the VIV improves the average Nu by 234.8% and 51.4% in comparison with a clean channel and a channel with a stationary cylinder, respectively. The cylinder with the natural frequency close to the vortex shedding frequency is proved to have the maximum heat transfer enhancement. When the natural frequency is different from the vortex shedding frequency, the lower natural frequency shows a higher heat transfer rate and lower pressure loss than the larger one.


1983 ◽  
Vol 105 (1) ◽  
pp. 98-104 ◽  
Author(s):  
H. Sakamoto ◽  
M. Arie

An experimental investigation was carried out on the flow around a normal plate of finite width mounted on a smooth plane wall along which a turbulent boundary layer was fully developed. Experimental data were collected to investigate the effects of (1) the aspect ratio of the plate (2) the parameters characterizing the boundary-layer on the pressure drag and the vortex shedding frequency. The pressure drag coefficient of the plate defined by CDτ = D/(1/2ρuτ2hw) was found to be expressed by a power function of huτ/ν in the range h/δ<1.0 for each aspect ratio w/h, where D is the pressure drag, uτ is the shear velocity, ρ is the density of fluid, h and w are the height and the width of the plate, respectively, ν is the kinematic viscosity, δ is the thickness of the boundary layer. Also, the Strouhal number for the plate defined by St =fc • w/ U0 was found to be expressed by a power function of the aspect ratio w/h in the range of h/δ less than about 1.0, where fc is the vortex shedding frequency, U0 is the free-stream velocity. As the aspect ratio was reduced, the type of vortex shedding behind the plate was found to change from the arch type to the Karman type at the aspect ratio of about 0.8.


1983 ◽  
Vol 126 ◽  
pp. 147-165 ◽  
Author(s):  
Hiroshi Sakamoto ◽  
Mikio Arie

Measurements of the vortex-shedding frequency behind a vertical rectangular prism and a vertical circular cylinder attached to a plane wall are correlated with the characteristics of the smooth-wall turbulent boundary layer in which they are immersed. Experimental data were collected to investigate the effects of (i) the aspect ratio of these bodies and (ii) the boundary-layer characteristics on the vortex-shedding frequency. The Strouhal number for the rectangular prism and the circular cylinder, defined by S = fcw/U0 and fcd/U0 respectively, was found to be expressed by a power function of the aspect ratio h/w (or h/d). Here fc is the vortex-shedding frequency, U0 is the free-stream velocity, h is the height, w is the width and d is the diameter. As the aspect ratio is reduced, the type of vortex shedding behind each of the two bodies was found to change from the Karman-type vortex to the arch-type vortex at the aspect ratio of 2·0 for the rectangular prism and 2·5 for the circular cylinder.


Author(s):  
Philippe Ausoni ◽  
Mohamed Farhat ◽  
Franc¸ois Avellan

The present study deals with the shedding process of the Ka´rma´n vortices in the wake of a NACA0009 hydrofoil at high Reynolds number, Reh = 25·103 − 65·103. This research addresses the effects of the foil leading edge roughness on the wake dynamic with a special focus on the vortex shedding frequency, vortex-induced vibration and three-dimensionality of vortex shedding. For smooth leading edge, the shedding frequency of Ka´rma´n vortices occurs at constant Strouhal number, St = 0.24. The wake exhibits 3D instabilities and the vortex induced vibration signals strong modulation with intermittent weak shedding cycles. Direct relation between vibration amplitude and vortex spanwise organization is shown. In the case of rough leading edge, the Ka´rma´n shedding frequency is notably decreased compared to the smooth one, St = 0.18. Moreover, the vortex induced vibration level is significantly increased and the vibration spectra sharply peaked. The occurrence of vortex dislocations is shown to be less frequent with the roughness. The shedding of the vortices is considered on the whole as in phase along the hydrofoil span. Obviously, the shedding process of the Ka´rma´n vortices is highly related to the state of the boundary layer over the entire hydrofoil. It is believed that in the case of smooth leading edge, slight spanwise non-uniformities in the boundary-layer flow lead to slight instantaneous variation in vortex shedding frequency along the span which is enough to trigger vortex dislocations. On the contrary, for the rough leading edge, the location of transition to turbulence is uniformly forced which leads to the reduction of the spanwise boundary-layer non-uniformities and therefore to the enhancement of the coherence length of the Ka´rma´n vortices.


2021 ◽  
Author(s):  
Andrew Hayden ◽  
Cole Hefner ◽  
Alexandrina Untaroiu ◽  
John Gillespie ◽  
K. Todd Lowe

Abstract The StreamVane™ swirl distortion generator, developed by Virginia Tech, can efficiently reproduce the boundary layer of an airframe or duct found in boundary layer ingesting (BLI) aircraft. Due to manufacturing limitations, the vanes within StreamVanes induce unsteady, vortical wakes, commonly known as a von Karman vortex street. This paper investigates the use of a commercial URANS code and SST turbulence model to predict the vortex shedding frequency from the vanes. The objective was accomplished in two main tasks. First, the CFD methodology was validated by modeling the fluid dynamics of a linear cascade experiment done by the von Karman Institute. Second, the same methodology was applied to airfoils used in StreamVane design to calculate the shedding frequency as a function of turning angle and TE thickness. It was predicted that an increase in turning angle exponentially increased the shedding frequency while an increase in TE thickness exponentially decreased the shedding frequency. The results provided a correlation between the shedding frequency and airfoil characteristics in StreamVanes as well as various turbomachinery components.


2014 ◽  
Vol 493 ◽  
pp. 68-73 ◽  
Author(s):  
Willy Stevanus ◽  
Yi Jiun Peter Lin

The research studies the characteristics of the vertical flow past a finite-length horizontal cylinder at low Reynolds numbers (ReD) from 250 to 1080. The experiments were performed in a vertical closed-loop water tunnel. Flow fields were observed by the particle tracer approach for flow visualization and measured by the Particle Image Velocimetry (P.I.V.) approach for velocity fields. The characteristics of vortex formation in the wake of the finite-length cylinder change at different regions from the tip to the base of it. Near the tip, a pair of vortices in the wake was observed and the size of the vortex increased as the observed section was away from the tip. Around a distance of 3 diameters of the cylinder from its tip, the vortex street in the wake was observed. The characteristics of vortex formation also change with increasing Reynolds numbers. At X/D = -3, a pair of vortices was observed in the wake for ReD = 250, but as the ReD increases the vortex street was observed at the same section. The vortex shedding frequency is analyzed by Fast Fourier Transform (FFT). Experimental results show that the downwash flow affects the vortex shedding frequency even to 5 diameters of the cylinder from its tip. The interaction between the downwash flow and the Von Kármán vortex street in the wake of the cylinder is presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document