Shock structure near a wall in pure inert gas and in binary inert-gas mixtures

1984 ◽  
Vol 143 ◽  
pp. 305-326 ◽  
Author(s):  
B. Schmidt ◽  
F. Seiler ◽  
M. Wörner

The shock-wave structure close to a wall in pure argon and binary mixtures of noble gases (argon–helium, xenon–helium) is investigated experimentally and numerically in the shock-wave Mach-number range 2·24 ≤ Ms ≤ 9.21. Measured and calculated density profiles are compared, and some conclusions are drawn about the accommodation at the wall and the intermolecular force potential.For binary gas mixtures only a few results are presented. Weak argon signals of the electron-beam-luminescence method on the experimental side and the computer time needed for the numerical simulation allowed the treatment of a few parameter combinations only.

2021 ◽  
Vol 11 (11) ◽  
pp. 4736
Author(s):  
Saleh Baqer ◽  
Dimitrios J. Frantzeskakis ◽  
Theodoros P. Horikis ◽  
Côme Houdeville ◽  
Timothy R. Marchant ◽  
...  

The structure of optical dispersive shock waves in nematic liquid crystals is investigated as the power of the optical beam is varied, with six regimes identified, which complements previous work pertinent to low power beams only. It is found that the dispersive shock wave structure depends critically on the input beam power. In addition, it is known that nematic dispersive shock waves are resonant and the structure of this resonance is also critically dependent on the beam power. Whitham modulation theory is used to find solutions for the six regimes with the existence intervals for each identified. These dispersive shock wave solutions are compared with full numerical solutions of the nematic equations, and excellent agreement is found.


1967 ◽  
Vol 72 (21) ◽  
pp. 5275-5286 ◽  
Author(s):  
G. Schubert ◽  
W. D. Cummings

1976 ◽  
Vol 10 (1) ◽  
pp. 237-240 ◽  
Author(s):  
Rolf Landauer

The flow resulting from the impulsive motion of a piston moving at constant speed in a dusty gas is studied analytically and numerically. An idealized equilibrium-gas approximation is used to discuss the effects of piston speed and mass concentration of dust particles on the eventually formed shock wave. The detailed time-dependent change of the flow structure is studied by solving the equations of motion numerically. A partly dispersed shock-wave structure is formed at a high piston speed and a fully dispersed shock at a low piston speed. Two situations are considered, where the particles striking the piston experience an elastic collision, or where they stick to its surface. Significant effects on the flow produced by particles that reflect from the piston surface are discussed and clarified.


Sign in / Sign up

Export Citation Format

Share Document