Final stages of transition to turbulence in plane channel flow

1984 ◽  
Vol 148 ◽  
pp. 413-442 ◽  
Author(s):  
S. Biringen

This paper involves a numerical simulation of the final stages of transition to turbulence in plane channel flow at a Reynolds number of 1500. Three-dimensional incompressible Navier–Stokes equations are numerically integrated to obtain the time evolution of two- and three-dimensional finite-amplitude disturbances. Computations are performed on the CYBER-203 vector processor for a 32 × 51 × 32 grid. Solutions indicate the existence of structures similar to those observed in the laboratory and characteristic of the various stages of transition that lead to final breakdown. In particular, evidence points to the formation of a A-shaped vortex and the subsequent system of horsehoe vortices inclined to the main flow direction as the primary elements of transition. Details of the resulting flow field after breakdown indicate the evolution of streaklike formations found in turbulent flows. Although the flow field does approach a steady state (turbulent channel flow), the introduction of subgrid-scale terms seems necessary to obtain fully developed turbulence statistics.

2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
Wang Wenquan ◽  
Zhang Lixiang ◽  
Yan Yan ◽  
Guo Yakun

An innovative computational model is presented for the large eddy simulation (LES) of multidimensional unsteady turbulent flow problems in complex geometries. The main objectives of this research are to know more about the structure of turbulent flows, to identify their three-dimensional characteristic, and to study physical effects due to complex fluid flow. The filtered Navier-Stokes equations are used to simulate large scales; however, they are supplemented by dynamic subgrid-scale (DSGS) models to simulate the energy transfer from large scales toward subgrid-scales, where this energy will be dissipated by molecular viscosity. Based on the Taylor-Galerkin schemes for the convection-diffusion problems, this model is implemented in a three-dimensional finite element code using a three-step finite element method (FEM). Turbulent channel flow and flow over a backward-facing step are considered as a benchmark for validating the methodology by comparing with the direct numerical simulation (DNS) results or experimental data. Also, qualitative and quantitative aspects of three-dimensional complex turbulent flow in a strong 3D blade passage of a Francis turbine are analyzed.


Author(s):  
Thomas Ludwig Kaiser ◽  
Kilian Oberleithner

Abstract In this paper a new method is introduced to model the transport of entropy waves and equivalence ratio fluctuations in turbulent flows. The model is based on the Navier-Stokes equations and includes a transport equation for a passive scalar, which may stand for entropy or equivalence ratio fluctuations. The equations are linearized around the mean turbulent fields, which serve as the input to the model in addition to a turbulent eddy viscosity, which accounts for turbulent diffusion of the perturbations. Based on these inputs, the framework is able to predict the linear response of the flow velocity and passive scalar to harmonic perturbations that are imposed at the boundaries of the computational domain. These in this study are fluctuations in the passive scalar and/or velocities at the inlet of a channel flow. The code is first validated against analytic results, showing very good agreement. Then the method is applied to predict the convection, mean flow dispersion and turbulent mixing of passive scalar fluctuations in a turbulent channel flow, which has been studied in previous work with Direct Numerical Simulations (DNS). Results show that our code reproduces the dynamics of coherent passive scalar transport in the DNS with very high accuracy and low numerical costs, when the DNS mean flow and Reynolds stresses are provided. Furthermore, we demonstrate that turbulent mixing has a significant effect on the transport of the passive scalar fluctuations. Finally, we apply the method to explain experimental observations of transport of equivalence ratio fluctuations in the mixing duct of a model burner.


1996 ◽  
Author(s):  
Moming Su ◽  
Chuan-gang Gu ◽  
Yong-miao Miao

The complex three-dimensional flow field in an axial-flow impeller incorporating high-Reynolds-number k-ε turbulence model is studied in this paper. The fully three-dimensional Reynolds averaged Navier-Stokes equations are solved. A computational procedure has been developed for predicting three-dimensional incompressible separated turbulent flows in the impeller. The SIMPLE-like algorithm is used. Convective terms are approximated with higher-order upstream-weighted approximations and a TVD-type MUSCL scheme. Physical covariant velocity components are selected as dependent solving variables. The non-orthogonal boundary-fitted coordinate system and collocated grid arrangement are also employed. Rhie and Chow’s momentum interpolation method is adopted to eliminate the non-physical pressure and velocity oscillations. Periodic boundary condition and moving wall boundary condition are considered to simulate truthfully the turbulent flow field in impeller. Two types of axial-flow impellers are computed. The first one is designed by ordinary method and the other is a improved design that has been considered with eliminating flow separation and viscous vortex in the first design. The computed results show that the fully tree-dimensional turbulent flows computation can efficiently predict three-dimensional separated flows and viscous vortex in axial-flow impeller and vaneless clearance. Using the program, a designer can improve passage geometric design to enhance the performance of the fan.


2020 ◽  
Vol 5 (8) ◽  
Author(s):  
Sébastien Gomé ◽  
Laurette S. Tuckerman ◽  
Dwight Barkley

2005 ◽  
Vol 2005.43 (0) ◽  
pp. 175-176
Author(s):  
Atsushi UEHARA ◽  
Hiroshi MAEKAWA ◽  
Daisuke WATANABE

2013 ◽  
Vol 720 ◽  
pp. 15-65 ◽  
Author(s):  
G. A. Gerolymos ◽  
D. Sénéchal ◽  
I. Vallet

AbstractThe purpose of the present paper is to study the influence of wall echo on pressure fluctuations ${p}^{\prime } $, and on statistical correlations containing ${p}^{\prime } $, namely, redistribution ${\phi }_{ij} $, pressure diffusion ${ d}_{ij}^{(p)} $ and velocity pressure-gradient ${\Pi }_{ij} $. We extend the usual analysis of turbulent correlations containing pressure fluctuations in wall-bounded direct numerical simulations (Kim, J. Fluid Mech., vol. 205, 1989, pp. 421–451), separating ${p}^{\prime } $ not only into rapid ${ p}_{(r)}^{\prime } $ and slow ${ p}_{(s)}^{\prime } $ parts (Chou, Q. Appl. Maths, vol. 3, 1945, pp. 38–54), but also further into volume (${ p}_{(r; \mathfrak{V})}^{\prime } $ and ${ p}_{(s; \mathfrak{V})}^{\prime } $) and surface (wall echo, ${ p}_{(r; w)}^{\prime } $ and ${ p}_{(s; w)}^{\prime } $) terms. An algorithm, based on a Green’s function approach, is developed to compute the above splittings for various correlations containing pressure fluctuations (redistribution, pressure diffusion, velocity pressure-gradient), in fully developed turbulent plane channel flow. This exact analysis confirms previous results based on a method-of-images approximation (Manceau, Wang & Laurence, J. Fluid Mech., vol. 438, 2001, pp. 307–338) showing that, at the wall, ${ p}_{(\mathfrak{V})}^{\prime } $ and ${ p}_{(w)}^{\prime } $ are usually of the same sign and approximately equal. The above results are then used to study the contribution of each mechanism to the pressure correlations in low-Reynolds-number plane channel flow, and to discuss standard second-moment-closure modelling practices.


Sign in / Sign up

Export Citation Format

Share Document