External turbulence-induced axial flow and instability in a vortex

2016 ◽  
Vol 793 ◽  
pp. 353-379 ◽  
Author(s):  
Eric Stout ◽  
Fazle Hussain

External turbulence-induced axial flow in an incompressible, normal-mode stable Lamb–Oseen (two-dimensional) vortex column is studied via direct numerical simulations of the Navier–Stokes equations. Azimuthally oriented vorticity filaments, formed from external turbulence, advect radially towards or away from the vortex axis (depending on the filament’s swirl direction), resulting in a net induced axial flow in the vortex core; axial flow increases with increasing vortex Reynolds number ($Re=$ vortex circulation/viscosity). This contrasts the viscous mechanism for axial flow generation downstream of a lifting body, wherein an axial pressure gradient is produced by viscous diffusion of the swirl (Batchelor, J. Fluid Mech., vol. 20, 1964, pp. 645–658). Analysis of the self-induced motion of an arbitrarily curved external filament shows that any non-axisymmetric filament undergoes radial advection. We then studied the evolution of a vortex column starting with an imposed optimal transient growth perturbation. For a range of Re values, axial flow develops and initially grows as (time)$^{5/2}$ before decreasing after two turnover times; for $Re=10\,000$ – the highest computationally achievable – axial flow at late times becomes sufficiently strong to induce vortex instability. Contrary to a prior claim of a parent–offspring mechanism at the outer edge of the core, vorticity tilting within the core by axial flow is the underlying mechanism producing energy growth. Thus, external perturbations in practical flows (at $Re\sim 10^{7}$) produce destabilizing axial flow, possibly leading to the sought-after vortex breakup.

1992 ◽  
Vol 238 ◽  
pp. 487-507 ◽  
Author(s):  
Ernst W. Mayer ◽  
Kenneth G. Powell

Results are presented for a class of self-similar solutions of the steady, axisymmetric Navier–Stokes equations, representing the flows in slender (quasi-cylindrical) vortices. Effects of vortex strength, axial gradients and compressibility are studied. The presence of viscosity is shown to couple the parameters describing the core growth rate and the external flow field, and numerical solutions show that the presence of an axial pressure gradient has a strong effect on the axial flow in the core. For the viscous compressible vortex, near-zero densities and pressures and low temperatures are seen on the vortex axis as the strength of the vortex increases. Compressibility is also shown to have a significant influence upon the distribution of vorticity in the vortex core.


Author(s):  
Katsuhisa Fujita ◽  
Makoto Katou

The unstable phenomena of thin cylindrical shells subjected to annular axial flow are investigated. In this paper, the analytical model is composed of an elastic axisymmetric shell and a rigid one which are arranged co-axially. Considering the fluid structure interaction between shells and fluid flowing through an annular narrow passage, the coupled equation of motion is derived using Flu¨gge’s shell theory and Navier-Stokes equations. The unstable phenomena of thin cylindrical shells are clarified by using the root locus based on the complex eigenvalue analysis. The numerical parameter studies on the shells with a freely supported end and a rigid one, and with both simply supported ends, are performed taking the dimensins of shells, the characteristics of flowing fluid so on as parameters. The influence of these parameters on the threshold of instability of the coupled vibration between thin cylindrical shells and annular axial flowing fluid are investigated and discussed.


In the one hundred years since Rankine suggested his well known two-dimensional vortex model with finite core, no one has ever found any exact vortex solutions of the Navier-Stokes equations that can satisfy a complete set of physical boundary conditions. In this paper a variable viscosity is introduced and the existence of conical turbulent vortex solutions of the Navier-Stokes equations is examined. It is found that for a class of deliberately chosen eddy viscosity function a steady turbulent vortex can, for the first time, satisfy both the regularity condition at the core and the adherence condition at the surface, except for a singularity at the origin inherent in all conical similarity solutions. In its asymptotic form, if the eddy viscosity only varies in a boundary layer near the surface or the core, outside the layer the solution given would approach one of the laminar solutions of Yih et al . ( Physics Fluids 25, 2147 (1982)) or that of Serrin ( Phil. Trans. R. Soc. Lond. A 271, 325 (1972)) respectively. These results reveal some remarkable relations between the behaviour, and even the existence, of a vortex and turbulence.


2010 ◽  
Vol 649 ◽  
pp. 523-536 ◽  
Author(s):  
M. A. HERRADA ◽  
J. M. MONTANERO ◽  
C. FERRERA ◽  
A. M. GAÑÁN-CALVO

We examine the behaviour of a compound capillary jet from the spatio-temporal linear stability analysis of the Navier–Stokes equations. We map the jetting–dripping transition in the parameter space by calculating the Weber numbers for which the convective/absolute instability transition occurs. If the remaining dimensionless parameters are set, there are two critical Weber numbers that verify Brigg's pinch criterion. The region of absolute (convective) instability corresponds to Weber numbers smaller (larger) than the highest value of those two Weber numbers. The stability map is affected significantly by the presence of the outer interface, especially for compound jets with highly viscous cores, in which the outer interface may play an important role even though it is located very far from the core. Full numerical simulations of the Navier–Stokes equations confirm the predictions of the stability analysis.


Author(s):  
J.D Evans

The method of matched asymptotic expansions is used to construct solutions for the planar steady flow of Oldroyd-B fluids around re-entrant corners of angles π / α (1/2≤ α <1). Two types of similarity solutions are described for the core flow away from the walls. These correspond to the two main dominant balances of the constitutive equation, where the upper convected derivative of stress either dominates or is balanced by the upper convected derivative of the rate of strain. The former balance gives the incompressible Euler or inviscid flow equations and the latter balance the incompressible Navier–Stokes equations. The inviscid flow similarity solution for the core is that first derived by Hinch (Hinch 1993 J. Non-Newtonian Fluid Mech. 50 , 161–171) with a core stress singularity that depends upon the corner angle and radial distance as O ( r −2(1− α ) ) and a velocity behaviour that vanishes as O ( r α (3− α )−1 ). Extending the analysis of Renardy (Renardy 1995 J. Non-Newtonian Fluid Mech. 58 , 83–39), this outer solution is matched to viscometric wall behaviour for both upstream and downstream boundary layers. This structure is shown to hold for the majority of the retardation parameter range. In contrast, the similarity solution associated with the Navier–Stokes equations has a velocity behaviour O ( r λ ) where λ ∈(0,1) satisfies a nonlinear eigenvalue problem, dependent upon the corner angle and an associated Reynolds number defined in terms of the ratio of the retardation and relaxation times. This similarity solution is shown to hold as an outer solution and is matched into stress boundary layers at the walls which recover viscometric behaviour. However, the matching is restricted to values of the retardation parameter close to the relaxation parameter. In this case the leading order core stress is Newtonian with behaviour O ( r −(1− λ ) ).


2010 ◽  
Vol 43 ◽  
pp. 434-437
Author(s):  
Yuan Yi Liu ◽  
Rui Guang Li

Based on the Renault-averaged Navier-Stokes equations and a standard turbulence model, the different clearance of the outer edge on the impeller and the draft-tube is simulated by the commercial software CFX, in order to achieve optimal performance. The velocity distributions and pressure distributions within the stamping and welding multistage centrifugal pumps are analyzed. The reasonable clearance value which impact on its performance and properties have been discovered. This paper is helpful to improve the design theory of stamping and welding multistage centrifugal pumps.


A method is described of predicting the growth of a tangential velocity profile in fully developed laminar axial flow through a concentric annulus when the inner surface is rotated at speeds which are insufficient to generate Taylor vortices. The treatment, which is based on simplification and subsequent solution of the Navier-Stokes equations, as Fourier-Bessel series, appears preferable to momentum-integral techniques through greater simplicity of expression and in requiring fewer assumptions about the developing tangential profile. The validity of the predictions is best at high axial Reynolds number.


1993 ◽  
Vol 115 (4) ◽  
pp. 608-613
Author(s):  
Kumar Srinivasan ◽  
Stanley G. Rubin

Several viscous incompressible two and three-dimensional flows with strong inviscid interaction and/or axial flow reversal are considered with a segmented domain decomposition multigrid (SDDMG) procedure. Specific examples include the laminar flow recirculation in a trough geometry and in a three-dimensional step channel. For the latter case, there are multiple and three-dimensional recirculation zones. A pressure-based form of flux-vector splitting is applied to the Navier-Stokes equations, which are represented by an implicit, lowest-order reduced Navier-Stokes (RNS) system and a purely diffusive, higher-order, deferred-corrector. A trapezoidal or box-like form of discretization insures that all mass conservation properties are satisfied at interfacial and outflow boundaries, even for this primitive-variable non-staggered grid formulation. The segmented domain strategy is adapted herein for three-dimensional flows and is extended to allow for disjoint subdomains that do not share a common boundary.


1979 ◽  
Vol 101 (2) ◽  
pp. 173-180 ◽  
Author(s):  
M. Toren ◽  
A. Solan

The laminar isothermal compressible flow in a rotating cylinder with a stationary bottom is treated both numerically and by boundary layer matching. The numerical solution of the Navier-Stokes equations is based on a modified Cheng-Allen finite difference scheme. An approximate solution is obtained by matching boundary layers to an interior core. For sufficiently low Ekman numbers, the approximate and numerical solutions are in close agreement. The compressibility is shown to increase the angular velocity in the core and to decrease the meridional circulation. When the aspect ratio of the cylinder is increased, both the angular velocity in the core and the meridional circulation increase.


2002 ◽  
Vol 454 ◽  
pp. 419-442 ◽  
Author(s):  
IVAN DELBENDE ◽  
MAURICE ROSSI ◽  
STÉPHANE LE DIZÈS

The effect of stretching on the three-dimensional stability of a viscous unsteady vortex is addressed. The basic flow, which satisfies the Navier–Stokes equations, is a vortex with axial flow subjected to a time-dependent strain field oriented along its axis. The linear equations for the three-dimensional perturbations of the stretched vortex are first reduced by using successive changes of variables to equations which are almost identical to those of the unstretched vortex but with time-dependent parameters. These equations are then numerically solved in the particular case of the Batchelor vortex with a strain field which first compresses then stretches the vortex. Through this simulation, it is qualitatively demonstrated how the simultaneous action of stretching and azimuthal vorticity may destabilize a vortex. It is also argued that it provides a possible mechanism for the vortex bursts observed in turbulence experiments.


Sign in / Sign up

Export Citation Format

Share Document