Double reflection of capillary/gravity waves by a non-uniform current: a boundary-layer theory

1993 ◽  
Vol 251 ◽  
pp. 239-271 ◽  
Author(s):  
Karsten Trulsen ◽  
Chiang C. Mei

When a train of gravity waves encounters an opposing current, the wavelength is shortened and the waves may be reflected. If capillarity is included, the shortened waves may be reflected for a second time and experience further shortening. By this process the initially long gravity waves can be damped by viscosity quickly without breaking. In this paper a boundary-layer approximation is obtained close to the reflection points, and is matched to the ray approximations outside. This is then applied to the propagation of a wavepacket. Damping is accounted for in the ray solution and the result is compared to the undamped solution. The case where the two reflection points coalesce is also considered. It is found that as the separation between the reflection points decreases, the wavepacket appears to remain longer in the region of reflections relative to the width of this region.

2018 ◽  
Vol 49 (8) ◽  
pp. 793-807
Author(s):  
Vladimir Efimovich Kovalev

2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Takeru Yamada ◽  
Takeshi Imamura ◽  
Tetsuya Fukuhara ◽  
Makoto Taguchi

AbstractThe reason for stationary gravity waves at Venus’ cloud top to appear mostly at low latitudes in the afternoon is not understood. Since a neutral layer exists in the lower part of the cloud layer, the waves should be affected by the neutral layer before reaching the cloud top. To what extent gravity waves can propagate vertically through the neutral layer has been unclear. To examine the possibility that the variation of the neutral layer thickness is responsible for the dependence of the gravity wave activity on the latitude and the local time, we investigated the sensitivity of the vertical propagation of gravity waves on the neutral layer thickness using a numerical model. The results showed that stationary gravity waves with zonal wavelengths longer than 1000 km can propagate to the cloud-top level without notable attenuation in the neutral layer with realistic thicknesses of 5–15 km. This suggests that the observed latitudinal and local time variation of the gravity wave activity should be attributed to processes below the cloud. An analytical approach also showed that gravity waves with horizontal wavelengths shorter than tens of kilometers would be strongly attenuated in the neutral layer; such waves should originate in the altitude region above the neutral layer.


Author(s):  
Matthieu A. Andre ◽  
Philippe M. Bardet

Shear instabilities induced by the relaxation of laminar boundary layer at the free surface of a high speed liquid jet are investigated experimentally. Physical insights into these instabilities and the resulting capillary wave growth are gained by performing non-intrusive measurements of flow structure in the direct vicinity of the surface. The experimental results are a combination of surface visualization, planar laser induced fluorescence (PLIF), particle image velocimetry (PIV), and particle tracking velocimetry (PTV). They suggest that 2D spanwise vortices in the shear layer play a major role in these instabilities by triggering 2D waves on the free surface as predicted by linear stability analysis. These vortices, however, are found to travel at a different speed than the capillary waves they initially created resulting in interference with the waves and wave growth. A new experimental facility was built; it consists of a 20.3 × 146.mm rectangular water wall jet with Reynolds number based on channel depth between 3.13 × 104 to 1.65 × 105 and 115. to 264. based on boundary layer momentum thickness.


Sign in / Sign up

Export Citation Format

Share Document