The bifurcation of steady gravity water waves in (R, S) parameter space

1995 ◽  
Vol 302 ◽  
pp. 287-305 ◽  
Author(s):  
S. H. Doole ◽  
J. Norbury

The bifurcation of steady periodic waves from irrotational inviscid streamflows is considered. Normalizing the flux Q to unity leaves two other natural quantities R (pressure head) and S (flowforce) to parameterize the wavetrain. In a well-known paper, Benjamin & Lighthill (1954) presented calculations within a cnoidal-wave theory which suggested that the corresponding values of R and S lie inside the cusped locus traced by the sub- and supercritical streamflows. This rule has been applied since to many other flow scenarios. In this paper, regular expansions for the streamfunction and profile are constructed for a wave forming on a subcritical stream and thence values for R and S are calculated. These describe, locally, how wave brances in (R, S) parameter space point inside the streamflow cusp. Accurate numerics using a boundry-integral solver show how these constant-period branches extend globally and map out parameter space. The main result is to show that the large-amplitude branches for all steady Stokes’ waves lie surprisingly close to the subcritical stream branch, This has important consequences for the feasibility of undular bores (as opposed to hydraulic jumps) in obstructed flow. Moreover, the transition from the ‘long-wave region’ towards the ‘deep-water limit’ is char-acterized by an extreme geometry, bith of the wave branches and how they sit inside each other. It is also shown that a single (Q, R, S) trriple may represent more than one wave since the global branches can overlap in (R, S) parameter space. This non-uniqueness is not that associated with the known premature maxima of wave propertties as functions of wave amplitude near waves of greatest height.

A detailed discussion of Nekrasov’s approach to the steady water-wave problems leads to a new integral equation formulation of the periodic problem. This development allows the adaptation of the methods of Amick & Toland (1981) to show the convergence of periodic waves to solitary waves in the long-wave limit. In addition, it is shown how the classical integral equation formulation due to Nekrasov leads, via the Maximum Principle, to new results about qualitative features of periodic waves for which there has long been a global existence theory (Krasovskii 1961, Keady & Norbury 1978).


The method of multiple scales is used to examine the slow modulation of a harmonic wave moving over the surface of a two dimensional channel. The flow is assumed inviscid and incompressible, but the basic flow takes the form of an arbitrary shear. The appropriate nonlinear Schrödinger equation is derived with coefficients that depend, in a complicated way, on the shear. It is shown that this equation agrees with previous work for the case of no shear; it also agrees in the long wave limit with the appropriate short wave limit of the Korteweg-de Vries equation, the shear being arbitrary. Finally, it is remarked that the stability of Stokes waves over any shear can be examined by using the results derived here.


1984 ◽  
Vol 1 (19) ◽  
pp. 23 ◽  
Author(s):  
Yoshinobu Ogawa ◽  
Nobuo Shuto

Run-up of periodic waves on gentle or non-uniform slopes is discussed. Breaking condition and run-up height of non-breaking waves are derived "by the use of the linear long wave theory in the Lagrangian description. As to the breaking waves, the width of swash zone and the run-up height are-obtained for relatively gentle slopes (less than 1/30), on dividing the transformation of waves into dissipation and swash processes. The formula obtained here agrees with experimental data better than Hunt's formula does. The same procedure is applied to non-uniform slopes and is found to give better results than Saville's composite slope method.


1983 ◽  
Vol 133 ◽  
pp. 47-63 ◽  
Author(s):  
James T. Kirby ◽  
Robert A. Dalrymple

The diffraction of obliquely incident surface waves by an asymmetric trench is investigated using linearized potential theory. A numerical solution is constructed by matching particular solutions for each subregion of constant depth along vertical boundaries; the resulting matrix equation is solved numerically. Several cases where the trench-parallel wavenumber component in the incident-wave region exceeds the wavenumber for freely propagating waves in the trench are investigated and are found to result in large reductions in wave transmission; however, reflection is not total owing to the finiteness of the obstacle.Results for one case are compared with data obtained from a small-scale wave-tank experiment. An approximate solution based on plane-wave modes is derived and compared with the numerical solution and, in the long-wave limit, with a previous analytic solution.


Author(s):  
P. G. Drazin

ABSTRACTSome aspects of generation of water waves by wind and of turbulence in a heterogeneous fluid may be described by the theory of hydrodynamic stability. The technical difficulties of these problems of instability have led to obscurities in the literature, some of which are elucidated in this paper. The stability equation for a basic steady parallel horizontal flow under the influence of gravity is derived carefully, the undisturbed fluid having vertical variations of density and viscosity. Methods of solution of the equation for large Reynolds numbers and for long-wave disturbances are described. These methods are applied to simple models of wind blowing over water and of fresh water flowing over salt water.


Geophysics ◽  
1951 ◽  
Vol 16 (1) ◽  
pp. 63-80 ◽  
Author(s):  
Milton B. Dobrin

A non‐mathematical summary is presented of the published theories and observations on dispersion, i.e., variation of velocity with frequency, in surface waves from earthquakes and in waterborne waves from shallow‐water explosions. Two further instances are cited in which dispersion theory has been used in analyzing seismic data. In the seismic refraction survey of Bikini Atoll, information on the first 400 feet of sediments below the lagoon bottom could not be obtained from ground wave first arrival times because shot‐detector distances were too great. Dispersion in the water waves, however, gave data on speed variations in the bottom sediments which made possible inferences on the recent geological history of the atoll. Recent systematic observations on ground roll from explosions in shot holes have shown dispersion in the surface waves which is similar in many ways to that observed in Rayleigh waves from distant earthquakes. Classical wave theory attributes Rayleigh wave dispersion to the modification of the waves by a surface layer. In the case of earthquakes, this layer is the earth’s crust. In the case of waves from shot‐holes, it is the low‐speed weathered zone. A comparison of observed ground roll dispersion with theory shows qualitative agreement, but it brings out discrepancies attributable to the fact that neither the theory for liquids nor for conventional solids applies exactly to unconsolidated near‐surface rocks. Additional experimental and theoretical study of this type of surface wave dispersion may provide useful information on the properties of the surface zone and add to our knowledge of the mechanism by which ground roll is generated in seismic shooting.


Sign in / Sign up

Export Citation Format

Share Document