Supersonic vortex breakdown during vortex/cylinder interaction

1998 ◽  
Vol 369 ◽  
pp. 351-380 ◽  
Author(s):  
I. M. KALKHORAN ◽  
M. K. SMART ◽  
F. Y. WANG

The head-one interaction of a supersonic streamwise vortex with a circular cylinder reveals a vortex breakdown similar in many ways to that of incompressible vortex breakdown. In particular, the dramatic flow reorganization observed during the interaction resembles the conical vortex breakdown reported by Sarpkaya (1995) at high Reynolds number. In the present study, vortex breakdown is brought about when moderate and strong streamwise vortices encounter the bow shock in front of a circular cylinder at Mach 2.49. The main features of the vortex/cylinder interaction are the formation of a blunt-nosed conical shock with apex far upstream of the undisturbed shock stand-off distance, and a vortex core which responds to passage through the apex of the conical shock by expanding into a turbulent conical flow structure. The geometry of the expanding vortex core as well as the location of the conical shock apex are seen to be strong functions of the incoming vortex strength and the cylinder diameter. A salient feature of the supersonic vortex breakdown is the formation of an entropy-shear layer, which separates an interior subsonic zone containing the burst vortex from the surrounding supersonic flow. In keeping with the well-established characteristics of the low-speed vortex breakdown, a region of reversed flow is observed inside the turbulent subsonic zone. The steady vortex/cylinder interaction flow fields generated in the current study exhibit many characteristics of the unsteady vortex distortion patterns previously observed during normal shock wave/vortex interactions. This similarity of the instantaneous flow structure indicates that the phenomenon previously called vortex distortion by Kalkhoran et al. (1996) is a form of supersonic vortex breakdown.

2012 ◽  
Vol 43 (5) ◽  
pp. 589-613
Author(s):  
Vyacheslav Antonovich Bashkin ◽  
Ivan Vladimirovich Egorov ◽  
Ivan Valeryevich Ezhov ◽  
Sergey Vladimirovich Utyuzhnikov

AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 825-834
Author(s):  
F. Novak ◽  
T. Sarpkaya

1995 ◽  
Vol 117 (4) ◽  
pp. 522-532 ◽  
Author(s):  
W. C. Zierke ◽  
K. J. Farrell ◽  
W. A. Straka

A high-Reynolds-number pump (HIREP) facility has been used to acquire flow measurements in the rotor blade tip clearance region, with blade chord Reynolds numbers of 3,900,000 and 5,500,000. The initial experiment involved rotor blades with varying tip clearances, while a second experiment involved a more detailed investigation of a rotor blade row with a single tip clearance. The flow visualization on the blade surface and within the flow field indicate the existence of a trailing-edge separation vortex, a vortex that migrates radially upward along the trailing edge and then turns in the circumferential direction near the casing, moving in the opposite direction of blade rotation. Flow visualization also helps in establishing the trajectory of the tip leakage vortex core and shows the unsteadiness of the vortex. Detailed measurements show the effects of tip clearance size and downstream distance on the structure of the rotor tip leakage vortex. The character of the velocity profile along the vortex core changes from a jetlike profile to a wakelike profile as the tip clearance becomes smaller. Also, for small clearances, the presence and proximity of the casing endwall affects the roll-up, shape, dissipation, and unsteadiness of the tip leakage vortex. Measurements also show how much circulation is retained by the blade tip and how much is shed into the vortex, a vortex associated with high losses.


1997 ◽  
Author(s):  
Ashish Nedungadi ◽  
Mark Lewis ◽  
Ashish Nedungadi ◽  
Mark Lewis

2021 ◽  
Vol 2088 (1) ◽  
pp. 012040
Author(s):  
A V Sentyabov ◽  
D V Platonov ◽  
A V Minakov ◽  
A S Lobasov

Abstract The paper presents a study of the instability of the precessing vortex core in the model of the draft tube of a hydraulic turbine. The study was carried out using numerical modeling using various approaches: URANS, RSM, LES. The best agreement with the experimental data was shown by the RSM and LES methods with the modelling of the runner rotation by the sliding mesh method. In the regime under consideration, the precessing vortex rope is subject to instability, which leads to reconnection of its turns and the formation of an isolated vortex ring. Reconnection of the vortex core leads to aperiodic and intense pressure fluctuations recorded on the diffuser wall.


Sign in / Sign up

Export Citation Format

Share Document