Numerical simulations of oblique shock/vortex interactions resulting in vortex breakdown

1997 ◽  
Author(s):  
Ashish Nedungadi ◽  
Mark Lewis ◽  
Ashish Nedungadi ◽  
Mark Lewis
2012 ◽  
Vol 699 ◽  
pp. 216-262 ◽  
Author(s):  
Philippe Meliga ◽  
François Gallaire ◽  
Jean-Marc Chomaz

AbstractGlobal linear and nonlinear bifurcation analysis is used to revisit the spiral vortex breakdown of nominally axisymmetric swirling jets. For the parameters considered herein, stability analyses single out two unstable linear modes of azimuthal wavenumber $m= \ensuremath{-} 1$ and $m= \ensuremath{-} 2$, bifurcating from the axisymmetric breakdown solution. These modes are interpreted in terms of spiral perturbations wrapped around and behind the axisymmetric bubble, rotating in time in the same direction as the swirling flow but winding in space in the opposite direction. Issues are addressed regarding the role of these modes with respect to the existence, mode selection and internal structure of vortex breakdown, as assessed from the three-dimensional direct numerical simulations of Ruith et al. (J. Fluid Mech., vol. 486, 2003, pp. 331–378). The normal form describing the leading-order nonlinear interaction between modes is computed and analysed. It admits two stable solutions corresponding to pure single and double helices. At large swirl, the axisymmetric solution bifurcates to the double helix which remains the only stable solution. At low and moderate swirl, it bifurcates first to the single helix, and subsequently to the double helix through a series of subcritical bifurcations yielding hysteresis over a finite range of Reynolds numbers, the estimated bifurcation threshold being in good agreement with that observed in the direct numerical simulations. Evidence is provided that this selection is not to be ascribed to classical mean flow corrections induced by the existence of the unstable modes, but to a non-trivial competition between harmonics. Because the frequencies of the leading modes approach a strong $2$:$1$ resonance, an alternative normal form allowing interactions between the $m= \ensuremath{-} 2$ mode and the first harmonics of the $m= \ensuremath{-} 1$ mode is computed and analysed. It admits two stable solutions, the double helix already identified in the non-resonant case, and a single helix differing from that observed in the non-resonant case only by the presence of a slaved, phase-locked harmonic deformation. On behalf of the finite departure from the $2$:$1$ resonance, the amplitude of the slaved harmonic is however low, and the effect of the resonance on the bifurcation structure is merely limited to a reduction of the hysteresis range.


2017 ◽  
Vol 819 ◽  
pp. 678-712 ◽  
Author(s):  
Zvi Rusak ◽  
Yuxin Zhang ◽  
Harry Lee ◽  
Shixiao Wang

The dynamics of inviscid-limit, incompressible and axisymmetric swirling flows in finite-length, diverging or contracting, long circular pipes is studied through global analysis techniques and numerical simulations. The inlet flow is described by the profiles of the circumferential and axial velocity together with a fixed azimuthal vorticity while the outlet flow is characterized by a state with zero radial velocity. A mathematical model that is based on the Squire–Long equation (SLE) is formulated to identify steady-state solutions of the problem with special conditions to describe states with separation zones. The problem is then reduced to the columnar (axially-independent) SLE, with centreline and wall conditions for the solution of the outlet flow streamfunction. The solution of the columnar SLE problem gives rise to the existence of four types of solutions. The SLE problem is then solved numerically using a special procedure to capture states with vortex-breakdown or wall-separation zones. Numerical simulations based on the unsteady vorticity circulation equations are also conducted and show correlation between time-asymptotic states and steady states according to the SLE and the columnar SLE problems. The simulations also shed light on the stability of the various steady states. The uniqueness of steady-state solutions in a certain range of swirl is proven analytically and demonstrated numerically. The computed results provide the bifurcation diagrams of steady states in terms of the incoming swirl ratio and size of pipe divergence or contraction. Critical swirls for the first appearance of the various types of states are identified. The results show that pipe divergence promotes the appearance of vortex-breakdown states at lower levels of the incoming swirl while pipe contraction delays the appearance of vortex breakdown to higher levels of swirl and promotes the formation of wall-separation states.


1987 ◽  
Vol 3 (6) ◽  
pp. 525-533 ◽  
Author(s):  
K. Kailasanath ◽  
J. H. Gardner ◽  
J. P. Boris ◽  
E. S. Oran

1998 ◽  
Vol 369 ◽  
pp. 351-380 ◽  
Author(s):  
I. M. KALKHORAN ◽  
M. K. SMART ◽  
F. Y. WANG

The head-one interaction of a supersonic streamwise vortex with a circular cylinder reveals a vortex breakdown similar in many ways to that of incompressible vortex breakdown. In particular, the dramatic flow reorganization observed during the interaction resembles the conical vortex breakdown reported by Sarpkaya (1995) at high Reynolds number. In the present study, vortex breakdown is brought about when moderate and strong streamwise vortices encounter the bow shock in front of a circular cylinder at Mach 2.49. The main features of the vortex/cylinder interaction are the formation of a blunt-nosed conical shock with apex far upstream of the undisturbed shock stand-off distance, and a vortex core which responds to passage through the apex of the conical shock by expanding into a turbulent conical flow structure. The geometry of the expanding vortex core as well as the location of the conical shock apex are seen to be strong functions of the incoming vortex strength and the cylinder diameter. A salient feature of the supersonic vortex breakdown is the formation of an entropy-shear layer, which separates an interior subsonic zone containing the burst vortex from the surrounding supersonic flow. In keeping with the well-established characteristics of the low-speed vortex breakdown, a region of reversed flow is observed inside the turbulent subsonic zone. The steady vortex/cylinder interaction flow fields generated in the current study exhibit many characteristics of the unsteady vortex distortion patterns previously observed during normal shock wave/vortex interactions. This similarity of the instantaneous flow structure indicates that the phenomenon previously called vortex distortion by Kalkhoran et al. (1996) is a form of supersonic vortex breakdown.


2014 ◽  
Vol 759 ◽  
pp. 321-359 ◽  
Author(s):  
Zvi Rusak ◽  
Shixiao Wang

AbstractThe incompressible, inviscid and axisymmetric dynamics of perturbations on a solid-body rotation flow with a uniform axial velocity in a rotating, finite-length, straight, circular pipe are studied via global analysis techniques and numerical simulations. The investigation establishes the coexistence of both axisymmetric wall-separation and vortex-breakdown zones above a critical swirl level, ${\it\omega}_{1}$. We first describe the bifurcation diagram of steady-state solutions of the flow problem as a function of the swirl ratio ${\it\omega}$. We prove that the base columnar flow is a unique steady-state solution when ${\it\omega}$ is below ${\it\omega}_{1}$. This state is asymptotically stable and a global attractor of the flow dynamics. However, when ${\it\omega}>{\it\omega}_{1}$, we reveal, in addition to the base columnar flow, the coexistence of states that describe swirling flows around either centreline stagnant breakdown zones or wall quasi-stagnant zones, where both the axial and radial velocities vanish. We demonstrate that when ${\it\omega}>{\it\omega}_{1}$, the base columnar flow is a min–max point of an energy functional that governs the problem, while the swirling flows around the quasi-stagnant and stagnant zones are global and local minimizer states and become attractors of the flow dynamics. We also find additional min–max states that are transient attractors of the flow dynamics. Numerical simulations describe the evolution of perturbations on above-critical columnar states to either the breakdown or the wall-separation states. The growth of perturbations in both cases is composed of a linear stage of the evolution, with growth rates accurately predicted by the analysis of Wang & Rusak (Phys. Fluids, vol. 8, 1996a, pp. 1007–1016), followed by a stage of saturation to either one of the separation zone states. The wall-separation states have the same chance of appearing as that of vortex-breakdown states and there is no hysteresis loop between them. This is strikingly different from the dynamics of vortices with medium or narrow vortical core size in a pipe.


1997 ◽  
Author(s):  
Michael Smart ◽  
Iraj Kalkhoran ◽  
Michael Smart ◽  
Iraj Kalkhoran

2004 ◽  
Vol 108 (1087) ◽  
pp. 437-452 ◽  
Author(s):  
I. Gursul

Abstract Recent developments in delta wing aerodynamics are reviewed. For slender delta wings, recent investigations shed more light on the unsteady aspects of shear-layer structure, vortex core, breakdown and its instabilities. For nonslender delta wings, substantial differences in the structure of vortical flow and breakdown may exist. Vortex interactions are generic to both slender and nonslender wings. Various unsteady flow phenomena may cause buffeting of wings and fins, however, vortex breakdown, vortex shedding, and shear layer reattachment are the most dominant sources. Dynamic response of vortex breakdown over delta wings in unsteady flows can be characterised by large time lags and hysteresis, whose physical mechanisms need further studies. Unusual flow–structure interactions for nonslender wings in the form of self-excited roll oscillations have been observed. Recent experiments showed that substantial lift enhancement is possible on a flexible delta wing.


Sign in / Sign up

Export Citation Format

Share Document