Two-phase modelling of a fluid mixing layer

1999 ◽  
Vol 378 ◽  
pp. 119-143 ◽  
Author(s):  
J. GLIMM ◽  
D. SALTZ ◽  
D. H. SHARP

We analyse and improve a recently-proposed two-phase flow model for the statistical evolution of two-fluid mixing. A hyperbolic equation for the volume fraction, whose characteristic speed is the average interface velocity v*, plays a central role. We propose a new model for v* in terms of the volume fraction and fluid velocities, which can be interpreted as a constitutive law for two-fluid mixing. In the incompressible limit, the two-phase equations admit a self-similar solution for an arbitrary scaling of lengths. We show that the constitutive law for v* can be expressed directly in terms of the volume fraction, and thus it is an experimentally measurable quantity. For incompressible Rayleigh–Taylor mixing, we examine the self-similar solution based on a simple zero-parameter model for v*. It is shown that the present approach gives improved agreement with experimental data for the growth rate of a Rayleigh–Taylor mixing layer.Closure of the two-phase flow model requires boundary conditions for the surfaces that separate the two-phase and single-phase regions, i.e. the edges of the mixing layer. We propose boundary conditions for Rayleigh–Taylor mixing based on the inertial, drag, and buoyant forces on the furthest penetrating structures which define these edges. Our analysis indicates that the compatibility of the boundary conditions with the two-phase flow model is an important consideration. The closure assumptions introduced here and their consequences in relation to experimental data are compared to the work of others.

Author(s):  
Franc¸ois Gruselle ◽  
Johan Steimes ◽  
Patrick Hendrick

The Aero-Thermo-Mechanics (ATM) department of Universite´ Libre de Bruxelles (ULB) develops a new system to simultaneously pump and separate a two-phase flow, in particular oil/air mixtures. Two-phase flows are encountered in many applications (oil extraction, flow in nuclear power plant pumps, pulp and paper processing) but the study is mainly focused on aeroengine lubrication systems. The main objective is to obtain a compact and efficient system that can both extract the gas of a two-phase flow and increase the pressure of the liquid phase. Particular care is given to the liquid flow rate lost at the gas outlet of the system. A large range of gas/liquid volume ratio has been studied, leading to different two-phase flow regimes at the inlet of the system (slug, churn or annular flow). After successful tests with water-air prototypes, which have allowed to identify the key design and working parameters, the technology has been implemented for a hot oil-air mixture. This paper presents the test results of the first oil/air prototype under real in-flight operating conditions. The tests with oil/air mixtures were performed on the aeroengine lubrication system test bench of the ATM department. The identification and implementation of appropriate two-phase flow rate measurement systems is an essential contribution to the project. Two attractive measurement systems have been considered: a Coriolis density meter for the volume fraction at the liquid outlet and radio-tracing elements for the measurement of the oil consumption at the air outlet. In parallel, the flow field in the pump and separator system has been studied with commercial CFD (Computational Fluid Dynamics) software packages. The choice of the two-phase flow model is highly dependent on the two-phase flow regime. But different regimes can simultaneously exist in the pump and separator system. So, the Eulerian two-phase flow model, the most complex and general model, seems to be the most appropriate. A coupling of this model with a dispersed phase model is under investigation to take all two-phase flow phenomena into account.


1999 ◽  
Vol 133 (1-4) ◽  
pp. 84-105 ◽  
Author(s):  
B.L. Cheng ◽  
J. Glimm ◽  
D. Saltz ◽  
D.H. Sharp

Author(s):  
Jing Yang ◽  
Luis San Andres

Abstract Current and upcoming two-phase pump and compression systems in subsea production facilities must demonstrate long-term operation and continuous availability. Annular pressure seals, limiting secondary flow, also influence the dynamic stability of turbomachinery. Hence, it becomes paramount to quantify the leakage and dynamic performance of annular seals operating with a liquid in gas mixture (wet gas). The paper develops a simple analytical model predicting the leakage and cavity pressures for Labyrinth seals and pocket damper seals (PDSs) operating with two-phase flow. The model adapts Neumann's equation with a homogeneous flow model. Predicted leakage for a four-blade PDS operating under a low supply pressure (2.3 and 3.2 bar) and a low rotor speed (5,250 rpm) agree well with experimental results for both a pure gas and a wet gas conditions. For an eight-blade PDS supplied with air at 62.1 bar, discharge pressure 31.1 bar and rotor speed of 15 krpm, the analytical model predicts leakage that is just 2% larger than a CFD prediction. For the PDS supplied with an oil in gas mixture having gas volume fraction = 0.92 ~ 0.98, the simple model delivers leakage that is up to ~ 6% lower than published CFD results. Throughout the life of an oil well that sees radical changes in gas and liquid composition as well as pressure conditions, the expedient model, quick and accurate to estimate leakage in wet gases seals, can be readily integrated into an engineering routine or practice.


2015 ◽  
Vol 25 (9) ◽  
pp. 795-817 ◽  
Author(s):  
Mika P. Jarvinen ◽  
A. E. P. Kankkunen ◽  
R. Virtanen ◽  
P. H. Miikkulainen ◽  
V. P. Heikkila

2004 ◽  
Author(s):  
Gary Luke ◽  
Mark Eagar ◽  
Michael Sears ◽  
Scott Felt ◽  
Bob Prozan

Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 510
Author(s):  
Yan Huang ◽  
Bifen Shu ◽  
Shengnan Zhou ◽  
Qi Shi

In this paper, two-phase pressure drop data were obtained for boiling in horizontal rectangular microchannels with a hydraulic diameter of 0.55 mm for R-134a over mass velocities from 790 to 1122, heat fluxes from 0 to 31.08 kW/m2 and vapor qualities from 0 to 0.25. The experimental results show that the Chisholm parameter in the separated flow model relies heavily on the vapor quality, especially in the low vapor quality region (from 0 to 0.1), where the two-phase flow pattern is mainly bubbly and slug flow. Then, the measured pressure drop data are compared with those from six separated flow models. Based on the comparison result, the superficial gas flux is introduced in this paper to consider the comprehensive influence of mass velocity and vapor quality on two-phase flow pressure drop, and a new equation for the Chisholm parameter in the separated flow model is proposed as a function of the superficial gas flux . The mean absolute error (MAE ) of the new flow correlation is 16.82%, which is significantly lower than the other correlations. Moreover, the applicability of the new expression has been verified by the experimental data in other literatures.


Energy ◽  
2021 ◽  
Vol 218 ◽  
pp. 119543
Author(s):  
Jingxian Chen ◽  
Peihang Xu ◽  
Jie Lu ◽  
Tiancheng Ouyang ◽  
Chunlan Mo

Sign in / Sign up

Export Citation Format

Share Document