Nonlinear oblique modulation of ion-acoustic waves in a two warm ion plasma

1986 ◽  
Vol 35 (3) ◽  
pp. 505-517 ◽  
Author(s):  
R. S. Chhabra ◽  
S. R. Sharma

Using the KBM perturbation technique, the stability of oblique modulation on ion-acoustic waves in a plasma with two species of warm ions is studied. The effect of the temperatures of two ion species on the modulational instability is discussed in detail. The nonlinear frequency shift and the change in zeroth-order density are also calculated for different values of ion temperatures. Predictions of the theory are in fairly good agreement with the experimental observation of modulational instability.

2015 ◽  
Vol 81 (3) ◽  
Author(s):  
B. Ghosh ◽  
S. Banerjee

Nonlinear amplitude modulation of ion-acoustic waves (IAWs) in a fully relativistic unmagnetized two-fluid plasma has been theoretically studied by using complete set of fully relativistic dynamic equations. To describe the nonlinear evolution of the wave envelope a nonlinear Schrödinger (NLS) equation is derived by using standard multiple scale perturbation technique. Using this equation it is shown that the wave becomes modulationally unstable as the wavenumber exceeds certain critical value. This critical wavenumber is found to decrease with increase in relativistic effect. The instability growth rate has also been calculated numerically for different values of plasma drift velocity. The growth rate is shown to decrease with increase in the relativistic effect.


2010 ◽  
Vol 76 (2) ◽  
pp. 169-181 ◽  
Author(s):  
A. ESFANDYARI-KALEJAHI ◽  
I. KOURAKIS ◽  
M. AKBARI-MOGHANJOUGHI

AbstractThe amplitude modulation of ion-acoustic waves is investigated in a plasma consisting of adiabatic warm ions, and two different populations of thermal electrons at different temperatures. The fluid equations are reduced to nonlinear Schrödinger equation by employing a multi-scale perturbation technique. A linear stability analysis for the wave packet amplitude reveals that long wavelengths are always stable, while modulational instability sets in for shorter wavelengths. It is shown that increasing the value of the hot-to-cold electron temperature ratio (μ), for a given value of the hot-to-cold electron density ratio (ν), favors instability. The role of the ion temperature is also discussed. In the limiting case ν = 0 (or ν → ∞), which correspond(s) to an ordinary (single) electron-ion plasma, the results of previous works are recovered.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Basudev Ghosh ◽  
Sreyasi Banerjee

Modulational instability of ion-acoustic waves has been theoretically investigated in an unmagnetized collisionless plasma with nonthermal electrons, Boltzmann positrons, and warm positive ions. To describe the nonlinear evolution of the wave amplitude a nonlinear Schrödinger (NLS) equation has been derived by using multiple scale perturbation technique. The nonthermal parameter, positron concentration, and ion temperature are shown to play significant role in the modulational instability of ion-acoustic waves and the formation of envelope solitons.


2011 ◽  
Vol 89 (6) ◽  
pp. 673-687 ◽  
Author(s):  
Aly M. Abourabia ◽  
Rabab A. Shahein

In the framework of irreversible thermodynamics, we study nonlinear ion-acoustic waves (IAWs) in viscous and collisional plasmas. Electrons, which form the background, are assumed to be nonthermal. On account of ion viscosity and ion-electron collisions, we investigate using ion fluid equations. We study the effects of the nonthermally distributed electrons β and the temperature ratio σ (= Ti/Te) on the stability, where the stability for Burger’s equation is analyzed by two methods: the phase portrait method and irreversible thermodynamics relations at different values of σ and β. We usa a reductive perturbation technique, where the nonlinear evolution of an IAW is governed by the driven Burger equation. This equation is solved exactly by using two methods: the tanh-function method and the Cole–Hopf transformation. Both methods produce shock wave solutions, their results compared, and good agreement exists in most predictions. The analytical calculations show that an IAW propagates as a shock wave with subsonic speed. The flow velocity, pressure, number density, electrostatic potential, and thermodynamic characteristics are estimated and illustrated as functions of time t and the distance x. It is found via the tanh-function method that the amplitudes of the sought-for functions of the system are suppressed and move towards an equilibrium state at the highest value of β. The tanh-function method reveals an advantage over the Cole–Hopf method in the viscous and collisional cases of IAWs, where it satisfies the stability conditions at the highest value of β with the chosen σ values when applied to evaluate the Onsager relation.


Author(s):  
Anne de Bouard

We study the stability of positive radially symmetric solitary waves for a three dimensional generalisation of the Korteweg de Vries equation, which describes nonlinear ion-acoustic waves in a magnetised plasma, and for a generalisation in dimension two of the Benjamin–Bona–Mahony equation.


Sign in / Sign up

Export Citation Format

Share Document