On the existence of weak stationary electron-acoustic double layers

1993 ◽  
Vol 49 (2) ◽  
pp. 283-293 ◽  
Author(s):  
R. L. Mace ◽  
M. A. Hellberg

The recent interest in the electron-acoustic wave as a source of broad-band electrostatic noise in the terrestrial magnetosphere makes it interesting to ask whether it can support stationary electrostatic double layers. We investigate this problem in a fluid plasma composed of cool ions, cool electrons and a hot Boltzmann electron component – which is known to support electron-acoustic waves. Although a formal application of the reductive perturbation technique to our dynamical equations leads to an mKdV equation for electron-acoustic waves, it is found that within the present physical model the consistency conditions and required ordering of the coefficients cannot be satisfied simultaneously for reasonable parameter values. As a consequence, it is shown that the neglect of the φ(2) term in deriving the mKdV equation is unjustified under general circumstances, and furthermore that the cubic nonlinearity introduced by the mKdV equation is negligible when compared with this term. Finally, we are led to conclude that stationary, weak electron-acoustic double layers cannot exist in such a plasma.

1983 ◽  
Vol 29 (3) ◽  
pp. 409-413 ◽  
Author(s):  
M. Y. Yu ◽  
P. K. Shukla

It is shown that a modified electron-acoustic wave exists in a plasma with distinct hot and cold electron components. The frequency of this wave depends strongly on the cold electron number density. Solitons associated with the modified electron-acoustic waves are also discussed.


2012 ◽  
Vol 90 (7) ◽  
pp. 661-666 ◽  
Author(s):  
Parvin Eslami ◽  
Marzieh Mottaghizadeh ◽  
Hamid Reza Pakzad

The propagation of electron-acoustic waves (EAWs) in plasmas composed of inertial cold electrons, hot superthermal electrons, and stationary ions is investigated. By means of the reduction perturbation technique, a nonlinear Schrödinger equation is derived and the modulation instability of EAW is analyzed, where the superthermal parameter is found to be of significant importance. It is shown that the presence of superthermal electrons enhances the critical wave number of the modulational instability of EAWs. Besides, due to the presence of the superthermal electrons, EAWs are stable on a vaster region. Moreover, the modulational instability growth rate is lower for a larger population of superthermal electrons. Further, it is shown that increasing values of the relative density ratio α = ne0/nc0 shifts the instability domain to lower values of wave number k.


2000 ◽  
Vol 105 (A6) ◽  
pp. 12919-12927 ◽  
Author(s):  
D. Schriver ◽  
M. Ashour-Abdalla ◽  
V. Sotnikov ◽  
P. Hellinger ◽  
V. Fiala ◽  
...  

Pramana ◽  
2015 ◽  
Vol 86 (4) ◽  
pp. 873-883 ◽  
Author(s):  
KAUSHIK ROY ◽  
SWAPAN KUMAR GHOSH ◽  
PRASANTA CHATTERJEE

2018 ◽  
Vol 25 (10) ◽  
pp. 102115 ◽  
Author(s):  
Pavel A. Andreev ◽  
S. V. Kolesnikov

2014 ◽  
Vol 32 (8) ◽  
pp. 975-989 ◽  
Author(s):  
R. A. Treumann ◽  
W. Baumjohann

Abstract. Coagulation of electrons to form macro-electrons or compounds in high temperature plasma is not generally expected to occur. Here we investigate, based on earlier work, the possibility for such electron compound formation (non-quantum "pairing") mediated in the presence of various kinds of plasma waves via the generation of attractive electrostatic potentials, the necessary condition for coagulation. We confirm the possibility of production of attractive potential forces in ion- and electron-acoustic waves, pointing out the importance of the former and expected consequences. While electron-acoustic waves presumably do not play any role, ion-acoustic waves may potentially contribute to formation of heavy electron compounds. Lower-hybrid waves also mediate compound formation but under different conditions. Buneman modes which evolve from strong currents may also potentially cause non-quantum "pairing" among cavity-/hole-trapped electrons constituting a heavy electron component that populates electron holes. The number densities are, however, expected to be very small and thus not viable for justification of macro-particles. All these processes are found to potentially generate cold compound populations. If such electron compounds are produced by the attractive forces, the forces provide a mechanism of cooling a small group of resonant electrons, loosely spoken, corresponding to classical condensation.


Sign in / Sign up

Export Citation Format

Share Document