Padé approximants and nonlinear waves

1979 ◽  
Vol 21 (3) ◽  
pp. 549-571 ◽  
Author(s):  
F. J. Romerias ◽  
J. P. Dougherty

The perturbation solution of the ordinary differential equations that describe exact nonlinear travelling plane waves leads to asymptotic expansions in powers of the (small) wave amplitude for both the proffle and the frequency of the waves. This paper shows how the Padé approximant method can be used to extend the validity of those expansions to larger amplitudes. The method is applied to the Duffing equation and to two types of nonlinear waves in a cold electron plasma: longitudinal oscillations and coupled transverse–longitudinal relativistic waves.

1982 ◽  
Vol 27 (1) ◽  
pp. 177-187 ◽  
Author(s):  
P. C. Clemmow

A perturbation method is applied to the pair of second-order, coupled, nonlinear differential equations that describe the propagation, through a cold electron plasma, of plane waves of fixed profile, with direction of propagation and electric vector perpendicular to the ambient magnetic field. The equations are expressed in terms of polar variables π, φ, and solutions are sought as power series in the small parameter n, where c/n is the wave speed. When n = 0 periodic solutions are represented in the (π,φ) plane by circles π = constant, and when n is small it is found that there are corresponding periodic solutions represented to order n2 by ellipses. It is noted that further investigation is required to relate these finite-amplitude solutions to the conventional solutions of linear theory, and to determine their behaviour in the vicinity of certain resonances that arise in the perturbation treatment.


1982 ◽  
Vol 27 (2) ◽  
pp. 239-259 ◽  
Author(s):  
F. J. Romeiras

We consider the stability against small perturbations of a class of exact wave solutions of the equations that describe an unmagnetized relativistic cold electron plasma. The main feature of these nonlinear waves is a transverse circularly polarized electric field with periodic amplitude modulation in the longitudinal direction. Floquet's theory of linear differential equations with periodic coefficients is used to solve the perturbation equations and obtain the instability growth rates.


1982 ◽  
Vol 27 (2) ◽  
pp. 267-276 ◽  
Author(s):  
P. C. Clemmow

With respect to the propagation through a cold, unmagnetized, electron plasma of nonlinear, highly superluminous, plane waves of fixed profile, with electric vector in a fixed plane parallel to the direction of propagation, it is known that, in addition to the familiar longitudinal and quasi-transverse waves, there can also be a third periodic wave. The perturbation method by which this third wave has previously been analysed is of restricted validity, and fails to describe how the wave disappears in the approach to the small-amplitude limit, where the longitudinal and transverse waves alone survive.


2007 ◽  
Vol 73 (3) ◽  
pp. 315-330 ◽  
Author(s):  
S. R. SESHADRI

AbstractThe propagation of circularly polarized electromagnetic beams along the magnetostatic field in an electron plasma is investigated. As a consequence of a strong interaction with the medium, the beam spreads rapidly on propagation near the cutoff frequencies and the cyclotron resonant frequency of the corresponding plane waves, as well as near the plasma frequency. The power absorption for unit length near the cyclotron frequency and the plasma frequency are determined. For tightly focused beams, there is significant power absorption near the plasma frequency as compared with that at the cyclotron resonant frequency.


1980 ◽  
Vol 47 (4) ◽  
pp. 861-865 ◽  
Author(s):  
G. V. Ranjan ◽  
C. R. Steele

Asymptotic expansions for self-equilibrating edge loading are derived in terms of exponential functions, from which formulas for the stiffness and flexibility edge influence coefficients are obtained, which include the quadratic nonlinear terms. The flexibility coefficients agree with those previously obtained by Van Dyke for the pressurized spherical shell and provide the generalization to general geometry and loading. In addition, the axial displacement is obtained. The nonlinear terms in the differential equations can be identified as “prestress” and “quadratic rotation.” To assess the importance of the latter, the problem of a pressurized spherical cap with roller supported edges is considered. Results show that whether the rotation at the edge is constrained or not, the quadratic rotation terms do not have a large effect on the axial displacement. The effect will be large for problems with small membrane stresses.


Sign in / Sign up

Export Citation Format

Share Document