Transition between Raman and Compton regimes in laser pulse amplification

2010 ◽  
Vol 76 (3-4) ◽  
pp. 395-401 ◽  
Author(s):  
R. A. CAIRNS

AbstractAmplification of a short laser pulse by means of its interaction with a counter-propagating long pulse in a plasma has been suggested as a way of reaching high intensities. Two regimes have been discussed in the literature. The first is the Raman regime, where the process is backward Raman scattering, described by the standard equations for resonant three-wave coupling, while the second is the Compton regime, in which electron dynamics is dominated by the ponderomotive force generated by the high-frequency wave, and electrons behave as single particles rather than producing a Langmuir wave. Our aim here is to use a simple model of electron dynamics to investigate the transition between these regimes.

Author(s):  
Seyma Tuluce Demiray ◽  
Hasan Bulut

This study is based on new soliton solutions of the system of equations for the ion sound wave under the action of the ponderomotive force due to high-frequency field and for the Langmuir wave. The generalized Kudryashov method (GKM), which is one of the analytical methods, has been tackled for finding exact solutions of the system of equations for the ion sound wave and the Langmuir wave. By using this method, dark soliton solutions of this system of equations have been obtained. Also, by using Mathematica Release 9, some graphical simulations were designed to see the behavior of these solutions.


Author(s):  
V Yu Ovsyannikov ◽  
A A Berestovoy ◽  
N N Lobacheva ◽  
V V Toroptsev ◽  
S A Trunov

1997 ◽  
Vol 22 (11) ◽  
pp. 811 ◽  
Author(s):  
O. E. Martínez ◽  
C. M. González Inchauspe

2019 ◽  
Author(s):  
Jun Wu ◽  
Jian Wu ◽  
Michael T. Rietveld ◽  
Ingemar Haggstrom ◽  
Haisheng Zhao ◽  
...  

Abstract. During an ionospheric heating campaign carried out at the European Incoherent Scatter Scientific Association (EISCAT), the ultra high frequency incoherent scatter (IS) radar observed a systematic variation in the altitude of the high-frequency enhanced plasma line (HFPL), which behaves depending on the pump frequency. Specifically, the HFPL altitude becomes lower when the pump lies above the 5th gyro-harmonic. The analysis shows that the enhanced electron temperature plays a decisive role in the descent in the HFPL altitude. That is, on the traveling path of the enhanced Langmuir wave, the enhanced electron temperature can only be matched by the low electron density at a lower altitude so that the Bragg condition can be satisfied, as expected from the dispersion relation of Langmuir wave.


2011 ◽  
Author(s):  
L. Shahrassai ◽  
S. Sobhanian ◽  
H. Khosravi ◽  
Muhammed Hasan Aslan ◽  
Ahmet Yayuz Oral ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document