Multidimensional instability of dust ion-acoustic solitary waves in a magnetized dusty electronegative plasma

2012 ◽  
Vol 78 (3) ◽  
pp. 279-288 ◽  
Author(s):  
S. S. DUHA ◽  
M. S. RAHMAN ◽  
A. A. MAMUN ◽  
M. G. M. ANOWAR

AbstractBasic features of obliquely propagating dust ion-acoustic (DIA) solitary waves, and their multidimensional instability in a magnetized dusty electronegative plasma (DENP) containing Boltzmann electrons, Boltzmann negative ions, adiabatic mobile positive ions, and negatively charged stationary dust have been theoretically investigated by reductive perturbation method and small-k perturbation expansion technique. The combined effects of ion adiabaticity, external magnetic field (obliqueness), and negatively charged dust, which are found to significantly modify the basic properties (speed, amplitude, width, and instability) of small but finite-amplitude DIA solitary waves, are explicitly examined. It is also found that the instability criterion and the growth rate of unstable perturbation are significantly modified by the external magnetic field, the propagation directions of both the nonlinear waves, and their perturbation modes. The implications of our results in space and laboratory dusty plasmas are briefly discussed.

2009 ◽  
Vol 75 (4) ◽  
pp. 475-493 ◽  
Author(s):  
M. G. M. ANOWAR ◽  
A. A. MAMUN

AbstractThe basic features of obliquely propagating dust-ion-acoustic (DIA) solitary waves, and their multi-dimensional instability in a magnetized multi-ion dusty plasma containing hot adiabatic inertia-less electrons, cold positive and negative ions, and negatively charged static dust have been theoretically investigated by the reductive perturbation method, and the small-k perturbation expansion technique. The combined effects of electron adiabaticity, external magnetic field (obliqueness), and negative ions, which are found to significantly modify the basic properties (speed, amplitude, width, and instability) of small but finite-amplitude DIA solitary waves, are explicitly examined. It is also found that the instability criterion and the growth rate are significantly modified by the external magnetic field, the propagation directions of both the nonlinear waves and their perturbation modes, and the presence of negative ions. The implications of our results in space and laboratory dusty plasmas are briefly discussed.


2010 ◽  
Vol 76 (3-4) ◽  
pp. 409-418 ◽  
Author(s):  
A. A. MAMUN ◽  
K. S. ASHRAFI ◽  
M. G. M. ANOWAR

AbstractThe dust ion-acoustic solitary waves (SWs) in an unmagnetized dusty adiabatic electronegative plasma containing inertialess adiabatic electrons, inertial single charged adiabatic positive and negative ions, and stationary arbitrarily (positively and negatively) charged dust have been theoretically studied. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation which admits an SW solution. The combined effects of the adiabaticity of plasma particles, inertia of positive or negative ions, and presence of positively or negatively charged dust, which are found to significantly modify the basic features of small but finite-amplitude dust-ion-acoustic SWs, are explicitly examined. The implications of our results in space and laboratory dusty electronegative plasmas are briefly discussed.


2010 ◽  
Vol 77 (1) ◽  
pp. 133-143 ◽  
Author(s):  
M. G. M. ANOWAR ◽  
K. S. ASHRAFI ◽  
A. A. MAMUN

AbstractThe basic features of obliquely propagating dust ion-acoustic (DIA) solitary waves in an adiabatic magnetized dusty electronegative plasma (containing Boltzmann electrons, Boltzmann negative ions, adiabatic positive ions, and negatively charged stationary dust) have been investigated. The reductive perturbation method has been employed to derive the Korteweg–de Vries (KdV) equation which admits a solitary wave solution. The combined effects of ion adiabaticity and external magnetic field (obliqueness), which are found to significantly modify the basic features of the small but finite-amplitude DIA solitary waves, are explicitly examined. The implications of our results in space and laboratory dusty plasmas are briefly discussed.


2013 ◽  
Vol 91 (7) ◽  
pp. 530-536 ◽  
Author(s):  
M.M. Masud ◽  
N.R. Kundu ◽  
A.A. Mamun

The nonlinear propagation of dust–ion acoustic (DIA) waves in an obliquely propagating magnetized dusty plasma, consisting of bi-maxwellian electrons (namely lower and higher temperature maxwellian electrons), negatively charged immobile dust grains, and inertial ions is rigorously investigated by deriving the Zakharov–Kuznetsov equation. Later, the multidimensional instability of the DIA solitary waves (DIASWs) is analyzed using the small-k perturbation technique. It is investigated that the nature of the DIASWs, the instability criterion, and the growth rate of the perturbation mode are significantly modified by the external magnetic field and the propagation directions of both the nonlinear waves and their perturbation modes. The implications of the results obtained from this investigation in space and laboratory dusty plasmas are briefly discussed.


2005 ◽  
Vol 12 (2) ◽  
pp. 022304 ◽  
Author(s):  
Cheong Rim Choi ◽  
Chang-Mo Ryu ◽  
Nam C. Lee ◽  
D.-Y. Lee

Galaxies ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 48
Author(s):  
Wael F. El-Taibany ◽  
Nabila A. El-Bedwehy ◽  
Nora A. El-Shafeay ◽  
Salah K. El-Labany

The modulational instability of ion-acoustic waves (IAWs) in a four-component magneto-plasma system consisting of positive–negative ions fluids and non-Maxwellian (r,q) distributed electrons and positrons, is investigated. The basic system of fluid equations is reduced to a three-dimensional (3D) nonlinear Schrödinger Equation (NLS). The domains of the IAWs stability are determined and are found to be strongly affected by electrons and positrons spectral parameters r and q and temperature ratio Tp/Te (Tp and Te are positrons and electrons temperatures, respectively). The existence domains, where we can observe the ion-acoustic rogue waves (IARWs) are determined. The basic features of IARWs are analyzed numerically against the distribution parameters and the other system physical parameters as Tp/Te and the external magnetic field strength. Moreover, a comparison between the first- and second-order rogue waves solution is presented. Our results show that the nonlinearity of the system increases by increasing the values of the non-Maxwellian parameters and the physical parameters of the system. This means that the system gains more energy by increasing r, q, Tp, and the external magnetic field through the cyclotron frequency ωci. Finally, our theoretical model displays the effect of the non-Maxwellian particles on the MI of the IAWs and RWs and its importance in D–F regions of Earth’s ionosphere through (H+,O2−) and (H+,H−) electronegative plasmas.


Sign in / Sign up

Export Citation Format

Share Document