Obliquely propagating dust–ion acoustic solitary waves and their multidimensional instabilities in magnetized dusty plasmas with bi-maxwellian electrons

2013 ◽  
Vol 91 (7) ◽  
pp. 530-536 ◽  
Author(s):  
M.M. Masud ◽  
N.R. Kundu ◽  
A.A. Mamun

The nonlinear propagation of dust–ion acoustic (DIA) waves in an obliquely propagating magnetized dusty plasma, consisting of bi-maxwellian electrons (namely lower and higher temperature maxwellian electrons), negatively charged immobile dust grains, and inertial ions is rigorously investigated by deriving the Zakharov–Kuznetsov equation. Later, the multidimensional instability of the DIA solitary waves (DIASWs) is analyzed using the small-k perturbation technique. It is investigated that the nature of the DIASWs, the instability criterion, and the growth rate of the perturbation mode are significantly modified by the external magnetic field and the propagation directions of both the nonlinear waves and their perturbation modes. The implications of the results obtained from this investigation in space and laboratory dusty plasmas are briefly discussed.

2015 ◽  
Vol 30 (40) ◽  
pp. 1550216 ◽  
Author(s):  
O. Rahman

The nonlinear propagation of dust-ion-acoustic (DIA) solitary waves (SWs) in an unmagnetized four-component dusty plasma containing electrons and negative ions obeying vortex-like (trapped) velocity distribution, cold mobile positive ions and arbitrarily charged stationary dust has been theoretically investigated. The properties of small but finite amplitude DIASWs are studied by employing the reductive perturbation technique. It has been found that owing to the departure from the Maxwellian electron and Maxwellian negative ion distribution to a vortex-like one, the dynamics of such DIASWs is governed by a modified Korteweg–de Vries (mKdV) equation which admits SW solution under certain conditions. The basic properties (speed, amplitude, width, etc.) of such DIASWs are found to be significantly modified by the presence of trapped electron and trapped negative ions. The implications of our results to space and laboratory dusty electronegative plasmas (DENPs) are briefly discussed.


2009 ◽  
Vol 75 (4) ◽  
pp. 475-493 ◽  
Author(s):  
M. G. M. ANOWAR ◽  
A. A. MAMUN

AbstractThe basic features of obliquely propagating dust-ion-acoustic (DIA) solitary waves, and their multi-dimensional instability in a magnetized multi-ion dusty plasma containing hot adiabatic inertia-less electrons, cold positive and negative ions, and negatively charged static dust have been theoretically investigated by the reductive perturbation method, and the small-k perturbation expansion technique. The combined effects of electron adiabaticity, external magnetic field (obliqueness), and negative ions, which are found to significantly modify the basic properties (speed, amplitude, width, and instability) of small but finite-amplitude DIA solitary waves, are explicitly examined. It is also found that the instability criterion and the growth rate are significantly modified by the external magnetic field, the propagation directions of both the nonlinear waves and their perturbation modes, and the presence of negative ions. The implications of our results in space and laboratory dusty plasmas are briefly discussed.


2012 ◽  
Vol 78 (3) ◽  
pp. 279-288 ◽  
Author(s):  
S. S. DUHA ◽  
M. S. RAHMAN ◽  
A. A. MAMUN ◽  
M. G. M. ANOWAR

AbstractBasic features of obliquely propagating dust ion-acoustic (DIA) solitary waves, and their multidimensional instability in a magnetized dusty electronegative plasma (DENP) containing Boltzmann electrons, Boltzmann negative ions, adiabatic mobile positive ions, and negatively charged stationary dust have been theoretically investigated by reductive perturbation method and small-k perturbation expansion technique. The combined effects of ion adiabaticity, external magnetic field (obliqueness), and negatively charged dust, which are found to significantly modify the basic properties (speed, amplitude, width, and instability) of small but finite-amplitude DIA solitary waves, are explicitly examined. It is also found that the instability criterion and the growth rate of unstable perturbation are significantly modified by the external magnetic field, the propagation directions of both the nonlinear waves, and their perturbation modes. The implications of our results in space and laboratory dusty plasmas are briefly discussed.


2010 ◽  
Vol 77 (1) ◽  
pp. 95-106 ◽  
Author(s):  
S. K. EL-LABANY ◽  
M. SHALABY ◽  
E. F. EL-SHAMY ◽  
M. A. KHALED

AbstractIn the present research paper, the nonlinear propagation of dust ion acoustic solitary waves in a collisional dusty plasma, which consists of negatively charged small dust grains, positively charged ions and isothermal electrons with background neutral particles, is investigated. The low rates compared to the ion oscillation frequency, of the charge-fluctuation dynamics of the dust grains, the ionization, ion-neutral and dust-neutral collisions (i.e. weak dissipations) are considered. Using the reductive perturbation theory, a damped Korteweg-de Vries (DKdV) equation is derived. On the other hand, the dynamics of solitary waves at a critical phase velocity is governed by a damped modified Korteweg-de Vries (DMKdV) equation. The nonlinear properties of dust ion acoustic waves in the presence of weak dissipations in the two cases are discussed.


2019 ◽  
Vol 37 (4) ◽  
pp. 370-380 ◽  
Author(s):  
Indrani Paul ◽  
Arkojyothi Chatterjee ◽  
Sailendra Nath Paul

AbstractNonlinear propagation of ion acoustic waves has been studied in unmagnetized quantum (degenerate) plasma in the presence of an ion beam using the one-dimensional quantum hydrodynamic model. The Korteweg–de Vries (K–dV) equation has been derived by using the reductive perturbation technique. The solution of ion acoustic solitary waves is obtained from the K–dV equation. The theoretical results have been analyzed numerically for different values of plasma parameters and the results are presented graphically. It is seen that the formation and structure of solitary waves are significantly affected by the ion beam in quantum plasma. The solitary waves will be compressive or rarefactive depending upon the values of velocity, concentration, and temperature of the ion beam. The critical value of ion beam density for the nonexistence of solitary wave has been numerically estimated, and its variation with velocity and temperature of ion beam has been discussed graphically. The results are new and would be very useful for understanding the beam–plasma interactions and the formation of nonlinear wave structures in dense quantum plasma.


2015 ◽  
Vol 81 (3) ◽  
Author(s):  
K. N. Mukta ◽  
M. S. Zobaer ◽  
N. Roy ◽  
A. A. Mamun

The nonlinear propagation of dust ion-acoustic (DIA) waves in a unmagnetized collisionless degenerate dense plasma (containing degenerate electron and positron, and classical ion fluids) has been theoretically investigated. The K-dV equation has been derived by employing the reductive perturbation method and by taking into account the effect of different plasma parameters in plasma fluid. The stationary solitary wave solution of K-dV equation is obtained, and numerically analyzed to identify the basic properties of DIA solitary structures. It has been shown that depending on plasma parametric values, the degenerate plasma under consideration supports compressive or rarefactive solitary structures. It has been also found that the effect of pressures on electrons, ions, and positrons significantly modify the basic features of solitary waves that are found to exist in such a plasma system. The relevance of our results in astrophysical objects such as white dwarfs and neutron stars, which are of scientific interest, is discussed briefly.


2018 ◽  
Vol 73 (2) ◽  
pp. 151-159 ◽  
Author(s):  
Prasanta Chatterjee ◽  
Rustam Ali ◽  
Asit Saha

AbstractAnalytical solitary wave solution of the dust ion acoustic (DIA) waves was studied in the framework of the damped forced Korteweg–de Vries (DFKdV) equation in superthermal collisional dusty plasmas. The reductive perturbation technique was applied to derive the DKdV equation. It is observed that both the rarefactive and compressive solitary wave solutions are possible for this plasma model. The effects of κ and the strength (f0) and frequency (ω) of the external periodic force were studied on the analytical solitary wave solution of the DIA waves. It is observed that the parameters κ, f0 and ω have significant effects on the structure of the damped forced DIA solitary waves. The results of this study may have relevance in laboratory plasmas as well as in space plasmas.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Muhammad Khalid ◽  
Mohsin Khan ◽  
Ata ur-Rahman ◽  
Muhammad Irshad

Abstract The nonlinear propagation of ion-acoustic (IA) electrostatic solitary waves (SWs) is studied in a magnetized electron–ion (e–i) plasma in the presence of pressure anisotropy with electrons following Tsallis distribution. The Korteweg–de Vries (KdV) type equation is derived by employing the reductive perturbation method (RPM) and its solitary wave (SW) solution is determined and analyzed. The effect of nonextensive parameter q, parallel component of anisotropic ion pressure p 1, perpendicular component of anisotropic ion pressure p 2, obliqueness angle θ, and magnetic field strength Ω on the characteristics of SW structures is investigated. The present investigation could be useful in space and astrophysical plasma systems.


2009 ◽  
Vol 16 (12) ◽  
pp. 123706 ◽  
Author(s):  
M. Shalaby ◽  
S. K. EL-Labany ◽  
E. F. EL-Shamy ◽  
W. F. El-Taibany ◽  
M. A. Khaled

Sign in / Sign up

Export Citation Format

Share Document