Non-Markovian dynamics of dust charge fluctuations in dusty plasmas

2014 ◽  
Vol 80 (3) ◽  
pp. 465-476 ◽  
Author(s):  
H. Asgari ◽  
S. V. Muniandy ◽  
Amir Ghalee

Dust charge fluctuates even in steady-state uniform plasma due to the discrete nature of the charge carriers and can be described using standard Langevin equation. In this work, two possible approaches in order to introduce the memory effect in dust charging dynamics are proposed. The first part of the paper provides the generalization form of the fluctuation-dissipation relation for non-Markovian systems based on generalized Langevin equations to determine the amplitudes of the dust charge fluctuations for two different kinds of colored noises under the assumption that the fluctuation-dissipation relation is valid. In the second part of the paper, aiming for dusty plasma system out of equilibrium, the fractionalized Langevin equation is used to derive the temporal two-point correlation function of grain charge fluctuations which is shown to be non-stationary due to the dependence on both times and not the time difference. The correlation function is used to derive the amplitude of fluctuations for early transient time.

1996 ◽  
Vol 55 (3) ◽  
pp. 349-358 ◽  
Author(s):  
Jin-Xiu Ma ◽  
M. Y. Yu ◽  
P. K. Shukla

Wave mixing resulting from the resonance of electromagnetic waves with ion acoustic waves modified by dust charge fluctuations is investigated. The corresponding nonlinear susceptibilities are derived and applied to the study of phase conjugation by four-wave mixing. It is shown that dust charge fluctuations can lead to a filling-up of the resonance-induced splitting of the phase-conjugate reflectivity, making the latter a useful tool for the diagnostics of dusty plasmas.


2015 ◽  
Vol 81 (5) ◽  
Author(s):  
Asit Saha ◽  
Prasanta Chatterjee ◽  
Nikhil Pal

Dust acoustic solitary waves, blow-up solitary waves and periodic waves have been investigated in unmagnetized dusty plasmas with Maxwell-distributed electrons and ions, considering dust charge fluctuations using the bifurcation theory of planar dynamical systems. The basic equations are transformed to an ordinary differential equation involving the electrostatic potential. Applying the bifurcation theory of planar dynamical systems, we have established the existence of solitary, blow-up solitary and periodic waves. Four exact solutions of the solitary, blow-up solitary and periodic waves are derived depending on the physical parameters. Regarding the solitary, blow-up solitary and periodic waves, we have presented the combined effects of the density ratio of electrons and ions (${\it\alpha}$), the temperature ratio of electrons and ions $({\it\beta})$ and the speed of the travelling wave ($v$) on the characteristics of dust acoustic solitary, blow-up solitary and periodic waves.


2010 ◽  
Vol 17 (6) ◽  
pp. 063704 ◽  
Author(s):  
H. Asgari ◽  
S. V. Muniandy ◽  
C. S. Wong

2020 ◽  
Vol 74 (6) ◽  
Author(s):  
Xiao-Song Yang ◽  
Bing Wang ◽  
Hui Chen ◽  
Xiao-Chang Chen ◽  
San-Qiu Liu

1998 ◽  
Vol 60 (3) ◽  
pp. 541-550 ◽  
Author(s):  
S. V. SINGH ◽  
N. N. RAO

We study the effect of charge fluctuations on the propagation of adiabatic linear and nonlinear dust-acoustic waves by considering the electrons and ions to be in Boltzmann equilibria, and the dust grains to satisfy the fluid equations with full adiabatic equation of state. Linear dust-acoustic waves are damped owing to the dust-charge fluctuations, and the damping rate decreases with increasing adiabatic dust pressure. Nonlinear dust-acoustic waves are governed by the set of coupled Boussinesq-like and dust-charge perturbation equations. It is shown that for unidirectional propagation, the Boussinesq-like equation reduces to usual Korteweg–de Vries (KdV) equation. At early times, the localized solutions of the KdV equation are damped owing to the dust-charge perturbations. The soliton amplitude decreases with increasing adiabatic dust plasma pressure and increases with Mach number. Soliton solutions are found only in the supersonic regime.


Sign in / Sign up

Export Citation Format

Share Document