Cylindrical liner Z-pinch experiments for fusion research and high-energy-density physics

2015 ◽  
Vol 81 (3) ◽  
Author(s):  
G. C. Burdiak ◽  
S. V. Lebedev ◽  
F. Suzuki-Vidal ◽  
G. F. Swadling ◽  
S. N. Bland ◽  
...  

A gas-filled cylindrical liner z-pinch configuration has been used to drive convergent radiative shock waves into different gases at velocities of 20–50 km s−1. On application of the 1.4 MA, 240 ns rise-time current pulse produced by the Magpie generator at Imperial College London, a series of cylindrically convergent shock waves are sequentially launched into the gas-fill from the inner wall of the liner. This occurs without any bulk motion of the liner wall itself. The timing and trajectories of the shocks are used as a diagnostic tool for understanding the response of the liner z-pinch wall to a large pulsed current. This analysis provides useful data on the liner resistivity, and a means to test equation of state (EOS) and material strength models within MHD simulation codes. In addition to providing information on liner response, the convergent shocks are interesting to study in their own right. The shocks are strong enough for radiation transport to influence the shock wave structure. In particular, we see evidence for both radiative preheating of material ahead of the shockwaves and radiative cooling instabilities in the shocked gas. Some preliminary results from initial gas-filled liner experiments with an applied axial magnetic field are also discussed.

2012 ◽  
Vol 19 (12) ◽  
pp. 122701 ◽  
Author(s):  
H. U. Rahman ◽  
F. J. Wessel ◽  
P. Ney ◽  
R. Presura ◽  
Rahmat Ellahi ◽  
...  

2004 ◽  
Vol 11 (5) ◽  
pp. 2729-2737 ◽  
Author(s):  
C. J. Garasi ◽  
D. E. Bliss ◽  
T. A. Mehlhorn ◽  
B. V. Oliver ◽  
A. C. Robinson ◽  
...  

2008 ◽  
Vol 86 (1) ◽  
pp. 267-276 ◽  
Author(s):  
A S Safronova ◽  
V L Kantsyrev ◽  
P Neill ◽  
U I Safronova ◽  
D A Fedin ◽  
...  

The results from the last six years of X-ray spectroscopy and spectropolarimetry of high-energy density Z-pinch plasmas complemented by experiments with the electron beam ion trap (EBIT) at the Lawrence Livermore National Laboratory (LLNL) are presented. The two topics discussed are the development of M-shell X-ray W spectroscopic diagnostics and K-shell Ti spectropolarimetry of Z-pinch plasmas. The main focus is on radiation from a specific load configuration called an “X-pinch”. In this work the study of X-pinches with tungsten wires combined with wires from other, lower Z materials is reported. Utilizing data produced with the LLNL EBIT at different energies of the electron beam the theoretical prediction of line positions and intensity of M-shell W spectra were tested and calibrated. Polarization-sensitive X-pinch experiments at the University of Nevada, Reno (UNR) provide experimental evidence for the existence of strong electron beams in Ti and Mo X-pinch plasmas and motivate the development of X-ray spectropolarimetry of Z-pinch plasmas. This diagnostic is based on the measurement of spectra recorded simultaneously by two spectrometers with different sensitivity to the linear polarization of the observed lines and compared with theoretical models of polarization-dependent spectra. Polarization-dependent K-shell spectra from Ti X-pinches are presented and compared with model calculations and with spectra generated by a quasi-Maxwellian electron beam at the LLNL EBIT-II electron beam ion trap.PACS Nos.: 32.30.Rj, 52.58.Lq, 52.70.La


2009 ◽  
Vol 4 (4) ◽  
pp. 79-90
Author(s):  
Evgeny Kraus

In the paper the approach for calculation of mechanical characteristics of materials behind strong shock waves is realized in the frame of uniform system of the few-parametric equation of state [1]. For the considered materials a comprehensive comparison of theoretical computational results with available at high energy density experimental data is carried out and good agreement of the results is obtained


2018 ◽  
Vol 116 (37) ◽  
pp. 18233-18238 ◽  
Author(s):  
Bruce A. Remington ◽  
Hye-Sook Park ◽  
Daniel T. Casey ◽  
Robert M. Cavallo ◽  
Daniel S. Clark ◽  
...  

The Rayleigh–Taylor (RT) instability occurs at an interface between two fluids of differing density during an acceleration. These instabilities can occur in very diverse settings, from inertial confinement fusion (ICF) implosions over spatial scales of∼10−3−10−1cm (10–1,000 μm) to supernova explosions at spatial scales of∼1012cm and larger. We describe experiments and techniques for reducing (“stabilizing”) RT growth in high-energy density (HED) settings on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. Three unique regimes of stabilization are described: (i) at an ablation front, (ii) behind a radiative shock, and (iii) due to material strength. For comparison, we also show results from nonstabilized “classical” RT instability evolution in HED regimes on the NIF. Examples from experiments on the NIF in each regime are given. These phenomena also occur in several astrophysical scenarios and planetary science [Drake R (2005)Plasma Phys Controlled Fusion47:B419–B440; Dahl TW, Stevenson DJ (2010)Earth Planet Sci Lett295:177–186].


2010 ◽  
Author(s):  
John L. Remo ◽  
Stein B. Jacobsen ◽  
Claude Phipps

2009 ◽  
Vol 27 (4) ◽  
pp. 709-717 ◽  
Author(s):  
C. Stehlé ◽  
A. Ciardi ◽  
J.-P. Colombier ◽  
M. González ◽  
T. Lanz ◽  
...  

AbstractAdvances in laser and Z-pinch technology, coupled with the development of plasma diagnostics, and the availability of high-performance computers, have recently stimulated the growth of high-energy density laboratory astrophysics. In particular, a number of experiments have been designed to study radiative shocks and jets with the aim of shedding new light on physical processes linked to the ejection and accretion of mass by newly born stars. Although general scaling laws are powerful tools to link laboratory experiments with astrophysical plasmas, the phenomena modeled are often too complicated for simple scaling to remain relevant. Nevertheless, the experiments can still give important insights into the physics of astrophysical systems and can be used to provide the basic experimental validation of numerical simulations in regimes of interest to astrophysics. We will illustrate the possible links between laboratory experiments, numerical simulations, and astrophysics in the context of stellar jets. First we will discuss the propagation of stellar jets in a cross-moving interstellar medium and the scaling to Z-pinch produced jets. Our second example focuses on slab-jets produced at the Prague Asterix Laser System laser installation and their practical applications to astrophysics. Finally, we illustrate the limitations of scaling for radiative shocks, which are found at the head of the most rapid stellar jets.


2014 ◽  
Vol 21 (3) ◽  
pp. 031206 ◽  
Author(s):  
M. E. Weller ◽  
A. S. Safronova ◽  
V. L. Kantsyrev ◽  
A. A. Esaulov ◽  
I. Shrestha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document