scholarly journals REDUCING DEHN FILLINGS AND SMALL SURFACES

2005 ◽  
Vol 92 (1) ◽  
pp. 203-223 ◽  
Author(s):  
SANGYOP LEE ◽  
SEUNGSANG OH ◽  
MASAKAZU TERAGAITO

In this paper we investigate the distances between Dehn fillings on a hyperbolic 3-manifold that yield 3-manifolds containing essential small surfaces including non-orientable surfaces. In particular, we study the situations where one filling creates an essential sphere or projective plane, and the other creates an essential sphere, projective plane, annulus, Möbius band, torus or Klein bottle, for all eleven pairs of such non-hyperbolic manifolds.

2006 ◽  
Vol 49 (4) ◽  
pp. 624-627
Author(s):  
Masakazu Teragaito

AbstractFor a non-trivial knot in the 3-sphere, only integral Dehn surgery can create a closed 3-manifold containing a projective plane. If we restrict ourselves to hyperbolic knots, the corresponding claim for a Klein bottle is still true. In contrast to these, we show that non-integral surgery on a hyperbolic knot can create a closed non-orientable surface of any genus greater than two.


2007 ◽  
Vol 143 (2) ◽  
pp. 419-447
Author(s):  
DANIEL MATIGNON ◽  
NABIL SAYARI

AbstractThis paper is devoted to 3-manifolds which admit two distinct Dehn fillings producing a Klein bottle.LetMbe a compact, connected and orientable 3-manifold whose boundary contains a 2-torusT. IfMis hyperbolic then only finitely many Dehn fillings alongTyield non-hyperbolic manifolds. We consider the situation where two distinct slopes γ1, γ2produce a Klein bottle. We give an upper bound for the distance Δ(γ1, γ2), between γ1and γ2. We show that there are exactly four hyperbolic manifolds for which Δ(γ1, γ2) > 4.


10.37236/461 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Yan Yang ◽  
Yanpei Liu

A type of rooted map called $(p,q,n)$-dipole, whose numbers on surfaces have some applications in string theory, are defined and the numbers of $(p,q,n)$-dipoles on orientable surfaces of genus 1 and 2 are given by Visentin and Wieler (The Electronic Journal of Combinatorics 14 (2007),#R12). In this paper, we study the classification of $(p,q,n)$-dipoles on nonorientable surfaces and obtain the numbers of $(p,q,n)$-dipoles on the projective plane and Klein bottle.


2021 ◽  
Vol 344 (11) ◽  
pp. 112528
Author(s):  
Evgeniy Krasko ◽  
Alexander Omelchenko

10.37236/2582 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Tamás Héger ◽  
Marcella Takáts

In a graph $\Gamma=(V,E)$ a vertex $v$ is resolved by a vertex-set $S=\{v_1,\ldots,v_n\}$ if its (ordered) distance list with respect to $S$, $(d(v,v_1),\ldots,d(v,v_n))$, is unique. A set $A\subset V$ is resolved by $S$ if all its elements are resolved by $S$. $S$ is a resolving set in $\Gamma$ if it resolves $V$. The metric dimension of $\Gamma$ is the size of the smallest resolving set in it. In a bipartite graph a semi-resolving set is a set of vertices in one of the vertex classes that resolves the other class.We show that the metric dimension of the incidence graph of a finite projective plane of order $q\geq 23$ is $4q-4$, and describe all resolving sets of that size. Let $\tau_2$ denote the size of the smallest double blocking set in PG$(2,q)$, the Desarguesian projective plane of order $q$. We prove that for a semi-resolving set $S$ in the incidence graph of PG$(2,q)$, $|S|\geq \min \{2q+q/4-3, \tau_2-2\}$ holds. In particular, if $q\geq9$ is a square, then the smallest semi-resolving set in PG$(2,q)$ has size $2q+2\sqrt{q}$. As a corollary, we get that a blocking semioval in PG$(2, q)$, $q\geq 4$, has at least $9q/4-3$ points. A corrigendum was added to this paper on March 3, 2017.


1992 ◽  
Vol 35 (4) ◽  
pp. 560-568 ◽  
Author(s):  
C. Thas

AbstractThe main result of this paper is a theorem about three conies in the complex or the real complexified projective plane. Is this theorem new? We have never seen it anywhere before. But since the golden age of projective geometry so much has been published about conies that it is unlikely that no one noticed this result. On the other hand, why does it not appear in the literature? Anyway, it seems interesting to "repeat" this property, because several theorems in connection with straight lines and (or) conies in projective, affine or euclidean planes are in fact special cases of this theorem. We give a few classical examples: the theorems of Pappus-Pascal, Desargues, Pascal (or its converse), the Brocard points, the point of Miquel. Finally, we have never seen in the literature a proof of these theorems using the same short method see the proof of the main theorem).


2003 ◽  
Vol 46 (2) ◽  
pp. 265-267 ◽  
Author(s):  
Seungsang Oh

AbstractLet M be a compact, connected, orientable, irreducible 3-manifold with a torus boundary. It is known that if two Dehn fillings on M along the boundary produce a reducible manifold and a manifold containing a Klein bottle, then the distance between the filling slopes is at most three. This paper gives a remarkably short proof of this result.


2004 ◽  
Vol 06 (06) ◽  
pp. 867-879 ◽  
Author(s):  
ZIZHOU TANG

This paper investigates existence and non-existence of immersions of Riemannian manifolds. It discovers the lowest dimension of the Euclidean space into which the projective plane FP2 is isometrically immersed, by the computation of the normal Euler class. For strictly hyperbolic immersion, a new obstruction involving signature or Kervaire semi-characteristic is found. As for the existence, it constructs a strictly hyperbolic immersion from the Klein bottle to the unit sphere S3(1), solving a question posed by Gromov.


10.37236/2952 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Robert E.L. Aldred ◽  
Jun Fujisawa

A graph $G$ with at least $2m+2$ edges is said to be distance $d$ $m$-extendable if for any matching $M$ in $G$ with $m$ edges in which the edges lie pair-wise distance at least $d$, there exists a perfect matching in $G$ containing $M$. In a previous paper, Aldred and Plummer proved that every $5$-connected triangulation of the plane or the projective plane of even order is distance $5$ $m$-extendable for any $m$. In this paper we prove that the same conclusion holds for every triangulation of the torus or the Klein bottle.


Sign in / Sign up

Export Citation Format

Share Document