scholarly journals Irrationality proofs à la Hermite

2011 ◽  
Vol 95 (534) ◽  
pp. 407-413
Author(s):  
Li Zhou

In [1] Niven used the integralto give a well-known proof of the irrationality of π. Recently Zhou and Markov [2] used a recurrence relation satisfied by this integral to present an alternative proof which may be more direct than Niven's.Niven did not cite any references in [1] and thus the origin or Hn seems rather mysterious and ingenious. However if we heed Abel's advice to ‘study the masters’, we find that Hn emerged much more naturally from the great works of Lambert [3] and Hermite [4].

1964 ◽  
Vol 68 (637) ◽  
pp. 59-59 ◽  
Author(s):  
E. Angus Boyd

I am grateful to Mr. Llewelyn for pointing out the slip in equation (3) of reference 1.In considering a particular case of the polynomial camber line I did have to evaluate a number of integrals of the kind but the process is not as laborious as perhaps Mr. Llewelyn implies for there is a simple recurrence relation between integrals of this kind.


1966 ◽  
Vol 15 (1) ◽  
pp. 67-71 ◽  
Author(s):  
C. Sudler

In (7), Wright gives an enumerative proof of an identity algebraically equivalent to that of Jacobi, namelyHere, and in the sequel, products run from 1 to oo and sums from - oo to oo unless otherwise indicated. We give here a simplified version of his argument by working directly with (1), the substitution leading to equation (3) of his paper being omitted. We then supply an alternative proof of (1) by means of a generalisation of the Durfee square concept utilising the rectangle of dimensions v by v + r for fixed r and maximal v contained in the Ferrers graph of a partition.


Author(s):  
M. Aslam Chaudhry

AbstractWe define an integral function Iμ(α, x; a, b) for non-negative integral values of μ byIt is proved that Iμ(α, x; a, b) satisfies a functional recurrence relation which is exploited to find a closed form evaluation of some incomplete integrals. New integral representations of the exponential integral and complementary error functions are found as special cases.


1989 ◽  
Vol 32 (1) ◽  
pp. 157-164 ◽  
Author(s):  
Siegfried H. Lehnigk

In this paper we shall discuss the positive roots of the equationwhere Iq is the modified Bessel function of the first kind. By means of a recurrence relation for Iq(r) [2, (5.7.9)], equation (1.1a) can also be written in the form


Author(s):  
M. Aslam Chaudhry ◽  
Munir Ahmad

SynopsisIn this paper we define an integral function Iμ(α; a, b) for non-negative integral values of μ byIt is proved that the function Iμ(α; a, b) satisfies a functional recurrence-relation which is then exploited to evaluate the infinite integralSome special cases of the result are also discussed.


Author(s):  
M. S. P. Eastham

SynopsisThe differential equationin N dimensions is considered, where q(x) is periodic. When N = 1, it is known that the conditional stability set coincides with the spectrum and that these also coincide with two other sets involving eigenvalues of associated eigenvalue problems. These results have been proved by means of the Floquet theory and the discriminant. Here an alternative proof is given which avoids the Floquet theory and which applies to the general case of N dimensions.


1996 ◽  
Vol 38 (2) ◽  
pp. 147-155 ◽  
Author(s):  
A. J. van der Poorten ◽  
I. E. Shparlinski

We consider sequences (Ah)defined over the field ℚ of rational numbers and satisfying a linear homogeneous recurrence relationwith polynomial coefficients sj;. We shall assume without loss of generality, as we may, that the sj, are defined over ℤ and the initial values A0A]…, An−1 are integer numbers. Also, without loss of generality we may assume that S0 and Sn have no non-negative integer zero. Indeed, any other case can be reduced to this one by making a shift h → h – l – 1 where l is an upper bound for zeros of the corresponding polynomials (and which can be effectively estimated in terms of their heights)


1938 ◽  
Vol 5 (3) ◽  
pp. 151-154
Author(s):  
C. E. Walsh

It is proposed here to consider the sequence un determined by the relationwhere, in particular,and initially u1 = θ1. The following is the main result to be proved.


1994 ◽  
Vol 36 (1) ◽  
pp. 81-86
Author(s):  
S. Srinivasan

Here we extend an arithmetical inequality about multiplicative functions obtained by K. Alladi, P. Erdős and J. D. Vaaler, to include also the case of submultiplicative functions. Also an alternative proof of an extension of a result used for this purpose is given.Let Uk, for integral k, denote the set {1,2,…, k}, and Vk denote the collection of all subsets of Uk. In the following, all unspecified sets like A,…, are assumed to be subsets of Uk. Let σ = {Si} and τ = {Tj} be two given collections of subsets of Uk. SetandLet ′ denote complementation in Uk (but for in the proof of (3) where it denotes complementation in C). For any collection p of subsets of Uk, let p′ denote the collection of the complements of members of p.


1974 ◽  
Vol 39 (4) ◽  
pp. 661-664 ◽  
Author(s):  
Alasdair Urquhart

In [1] Diego showed that there are only finitely many nonequivalent formulas in n variables in the positive implicational propositional calculus P. He also gave a recursive construction of the corresponding algebra of formulas, the free Hilbert algebra In on n free generators. In the present paper we give an alternative proof of the finiteness of In, and another construction of free Hilbert algebras, yielding a normal form for implicational formulas. The main new result is that In is built up from n copies of a finite Boolean algebra. The proofs use Kripke models [2] rather than the algebraic techniques of [1].Let V be a finite set of propositional variables, and let F(V) be the set of all formulas built up from V ⋃ {t} using → alone. The algebra defined on the equivalence classes , by settingis a free Hilbert algebra I(V) on the free generators . A set T ⊆ F(V) is a theory if ⊦pA implies A ∈ T, and T is closed under modus ponens. For T a theory, T[A] is the theory {B ∣ A → B ∈ T}. A theory T is p-prime, where p ∈ V, if p ∉ T and, for any A ∈ F(V), A ∈ T or A → p ∈ T. A theory is prime if it is p-prime for some p. Pp(V) denotes the set of p-prime theories in F(V), P(V) the set of prime theories. T ∈ P(V) is minimal if there is no theory in P(V) strictly contained in T. Where X = {A1, …, An} is a finite set of formulas, let X → B be A1 →····→·An → B (ϕ → B is B). A formula A is a p-formula if p is the right-most variable occurring in A, i.e. if A is of the form X → p.


Sign in / Sign up

Export Citation Format

Share Document