On Napoleon triangles and propeller theorems

2003 ◽  
Vol 87 (508) ◽  
pp. 42-50
Author(s):  
Zvonko Čerin

In this paper we shall consider two situations in triangle geometry when equilateral triangles appear and then show that they are closely related.In the first (known as the Napoleon theorem) equilateral triangles BCAT, CABT, and ABCT, are built on the sides of an arbitrary triangle ABC and their centroids are (almost always) vertices of an equilateral triangle ANBNCN (known as a Napoleon triangle of ABC; see Figure 1).

10.37236/815 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
A. M. d'Azevedo Breda ◽  
Patrícia S. Ribeiro ◽  
Altino F. Santos

The study of dihedral f-tilings of the Euclidean sphere $S^2$ by triangles and $r$-sided regular polygons was initiated in 2004 where the case $r=4$ was considered [5]. In a subsequent paper [1], the study of all spherical f-tilings by triangles and $r$-sided regular polygons, for any $r\ge 5$, was described. Later on, in [3], the classification of all f-tilings of $S^2$ whose prototiles are an equilateral triangle and an isosceles triangle is obtained. The algebraic and combinatorial description of spherical f-tilings by equilateral triangles and scalene triangles of angles $\beta$, $\gamma$ and $\delta$ $(\beta>\gamma>\delta)$ whose edge adjacency is performed by the side opposite to $\beta$ was done in [4]. In this paper we extend these results considering the edge adjacency performed by the side opposite to $\delta$.


10.37236/1223 ◽  
1994 ◽  
Vol 2 (1) ◽  
Author(s):  
R. L. Graham ◽  
B. D. Lubachevsky

Previously published packings of equal disks in an equilateral triangle have dealt with up to 21 disks. We use a new discrete-event simulation algorithm to produce packings for up to 34 disks. For each $n$ in the range $22 \le n \le 34$ we present what we believe to be the densest possible packing of $n$ equal disks in an equilateral triangle. For these $n$ we also list the second, often the third and sometimes the fourth best packings among those that we found. In each case, the structure of the packing implies that the minimum distance $d(n)$ between disk centers is the root of polynomial $P_n$ with integer coefficients. In most cases we do not explicitly compute $P_n$ but in all cases we do compute and report $d(n)$ to 15 significant decimal digits. Disk packings in equilateral triangles differ from those in squares or circles in that for triangles there are an infinite number of values of $n$ for which the exact value of $d(n)$ is known, namely, when $n$ is of the form $\Delta (k) := \frac{k(k+1)}{2}$. It has also been conjectured that $d(n-1) = d(n)$ in this case. Based on our computations, we present conjectured optimal packings for seven other infinite classes of $n$, namely \begin{align*} n & = & \Delta (2k) +1, \Delta (2k+1) +1, \Delta (k+2) -2 , \Delta (2k+3) -3, \\ && \Delta (3k+1)+2 , 4 \Delta (k), \text{ and } 2 \Delta (k+1) + 2 \Delta (k) -1 . \end{align*} We also report the best packings we found for other values of $n$ in these forms which are larger than 34, namely, $n=37$, 40, 42, 43, 46, 49, 56, 57, 60, 63, 67, 71, 79, 84, 92, 93, 106, 112, 121, and 254, and also for $n=58$, 95, 108, 175, 255, 256, 258, and 260. We say that an infinite class of packings of $n$ disks, $n=n(1), n(2),...n(k),...$, is tight , if [$1/d(n(k)+1) - 1/d(n(k))$] is bounded away from zero as $k$ goes to infinity. We conjecture that some of our infinite classes are tight, others are not tight, and that there are infinitely many tight classes.


2015 ◽  
Vol 48 (3) ◽  
Author(s):  
Janusz Januszewski

AbstractEvery collection of n (arbitrary-oriented) unit squares can be packed translatively into any equilateral triangle of side length 2:3755· √n.


10.37236/1771 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Vania Mascioni

In the context of finite metric spaces with integer distances, we investigate the new Ramsey-type question of how many points can a space contain and yet be free of equilateral triangles. In particular, for finite metric spaces with distances in the set $\{1,\ldots,n\}$, the number $D_n$ is defined as the least number of points the space must contain in order to be sure that there will be an equilateral triangle in it. Several issues related to these numbers are studied, mostly focusing on low values of $n$. Apart from the trivial $D_1=3$, $D_2=6$, we prove that $D_3=12$, $D_4=33$ and $81\leq D_5 \leq 95$.


2001 ◽  
Vol 44 (3) ◽  
pp. 292-297 ◽  
Author(s):  
Angela McKay

AbstractThere is a theorem, usually attributed to Napoleon, which states that if one takes any triangle in the Euclidean Plane, constructs equilateral triangles on each of its sides, and connects the midpoints of the three equilateral triangles, one will obtain an equilateral triangle. We consider an analogue of this problem in the hyperbolic plane.


1982 ◽  
Vol 19 (A) ◽  
pp. 113-122 ◽  
Author(s):  
B. H. Neumann

A method used by electrical engineers to analyse polyphase alternating current systems suggests a generalisation to arbitrary plane polygons of a theorem on triangles nowadays known, for obscure reasons, as ‘Napoleon's Theorem': the centroids of equilateral triangles erected on the sides of an arbitrary triangle form the vertices of an equilateral triangle. The generalisation to other polygons uses a construction first studied by C.-A. Laisant in 1877; results of Jesse Douglas (1940) and the author (1941) are re-derived by means of the elementary algebra of finite-dimensional vector spaces over the field of complex numbers.


2019 ◽  
Vol 3 (3) ◽  
pp. 43-54
Author(s):  
Dasari Naga Vijay Krishna

In this short paper, we study two new equilateral triangles associated with an arbitrary triangle and further generalizations.


Author(s):  
Ibragimov Husniddin Hikmatovich ◽  

There is some evidence that a right triangle and an equilateral triangle are related. Information about Pythagorean numbers is given. The geometric meaning of the relationship between right triangles and equilateral triangles is shown. The geometric meaning of the relationship between an equilateral triangle and an equilateral triangle is shown.


1982 ◽  
Vol 19 (A) ◽  
pp. 113-122 ◽  
Author(s):  
B. H. Neumann

A method used by electrical engineers to analyse polyphase alternating current systems suggests a generalisation to arbitrary plane polygons of a theorem on triangles nowadays known, for obscure reasons, as ‘Napoleon's Theorem': the centroids of equilateral triangles erected on the sides of an arbitrary triangle form the vertices of an equilateral triangle. The generalisation to other polygons uses a construction first studied by C.-A. Laisant in 1877; results of Jesse Douglas (1940) and the author (1941) are re-derived by means of the elementary algebra of finite-dimensional vector spaces over the field of complex numbers.


2014 ◽  
Vol 98 (541) ◽  
pp. 79-84 ◽  
Author(s):  
Fengming Dong ◽  
Dongsheng Zhao ◽  
Weng Kin Ho

Given two triangles ΔABC and ΔDEF, if each side of ΔDEF contains a vertex of ΔABC, then we call ΔDEF an outscribed triangle of ΔABC. Given ΔABC, let ΦΔABC be the set of all outscribed equilateral triangles of ΔABC. Clearly ΦΔABC is non-empty. In the following we will determine the area of the largest member of ΦΔABC when each angle of ΔABC is smaller than 120° and show that this largest member can be constructed by ruler and compass from ΔABC. The corresponding problem on quadrilaterals has been considered in [1].


Sign in / Sign up

Export Citation Format

Share Document