scholarly journals A question of Gross and the uniqueness of entire functions

1995 ◽  
Vol 138 ◽  
pp. 169-177 ◽  
Author(s):  
Hong-Xun yi

For any set S and any entire function f letwhere each zero of f — a with multiplicity m is repeated m times in Ef(S) (cf. [1]). It is assumed that the reader is familiar with the notations of the Nevanlinna Theory (see, for example, [2]). It will be convenient to let E denote any set of finite linear measure on 0 < r < ∞, not necessarily the same at each occurrence. We denote by S(r, f) any quantity satisfying .


2018 ◽  
Vol 68 (4) ◽  
pp. 823-836
Author(s):  
Nguyen Van Thin ◽  
Ha Tran Phuong ◽  
Leuanglith Vilaisavanh

Abstract In this paper, we prove a normal criteria for family of meromorphic functions. As an application of that result, we establish a uniqueness theorem for entire function concerning a conjecture of R. Brück. The above uniqueness theorem is an improvement of a problem studied by L. Z. Yang et al. [14]. However, our method differs the method of L. Z. Yang et al. [14]. We mainly use normal family theory and combine it with Nevanlinna theory instead of using only the Nevanlinna theory as in [14].



2020 ◽  
Vol 18 (1) ◽  
pp. 211-215
Author(s):  
Shengjiang Chen ◽  
Aizhu Xu

Abstract Let f(z) be an entire function of hyper order strictly less than 1. We prove that if f(z) and its nth exact difference {\Delta }_{c}^{n}f(z) share 0 CM and 1 IM, then {\Delta }_{c}^{n}f(z)\equiv f(z) . Our result improves the related results of Zhang and Liao [Sci. China A, 2014] and Gao et al. [Anal. Math., 2019] by using a simple method.



1973 ◽  
Vol 51 ◽  
pp. 123-130 ◽  
Author(s):  
Fred Gross ◽  
Chung-Chun Yang ◽  
Charles Osgood

An entire function F(z) = f(g(z)) is said to have f(z) and g(z) as left and right factors respe2tively, provided that f(z) is meromorphic and g(z) is entire (g may be meromorphic when f is rational). F(z) is said to be prime (pseudo-prime) if every factorization of the above form implies that one of the functions f and g is bilinear (a rational function). F is said to be E-prime (E-pseudo prime) if every factorization of the above form into entire factors implies that one of the functions f and g is linear (a polynomial). We recall here that an entire non-periodic function f is prime if and only if it is E-prime [5]. This fact will be useful in the sequel.



1986 ◽  
Vol 47 (1) ◽  
pp. 238-242 ◽  
Author(s):  
H. Alexander


1995 ◽  
Vol 118 (3) ◽  
pp. 527-542 ◽  
Author(s):  
A. C. Offord

SummaryThis is a study of entire functions whose coefficients are independent random variables. When the space of such functions is symmetric it is shown that independence of the coefficients alone is sufficient to ensure that almost all such functions will, for large z, be large except in certain small neighbourhoods of the zeros called pits. In each pit the function takes every not too large value and these pits have a certain uniform distribution.



1989 ◽  
Vol 27 (1-2) ◽  
pp. 169-177
Author(s):  
H. Alexander
Keyword(s):  


2010 ◽  
Vol 88 (3) ◽  
pp. 353-361
Author(s):  
R. G. HALBURD ◽  
R. J. KORHONEN

AbstractAccording to the classical Borel lemma, any positive nondecreasing continuous function T satisfiesT(r+1/T(r))≤2T(r) outside a possible exceptional set of finite linear measure. This lemma plays an important role in the theory of entire and meromorphic functions, where the increasing function T is either the logarithm of the maximum modulus function, or the Nevanlinna characteristic. As a result, exceptional sets appear throughout Nevanlinna theory, in particular in Nevanlinna’s second main theorem. In this paper, we consider generalizations of Borel’s lemma. Conversely, we consider ways in which certain inequalities can be modified so as to remove exceptional sets. All results discussed are presented from the point of view of real analysis.



1988 ◽  
Vol 38 (3) ◽  
pp. 351-356 ◽  
Author(s):  
Peter L. Walker

We consider the Abelian functional equationwhere φ is a given entire function and g is to be found. The inverse function f = g−1 (if one exists) must satisfyWe show that for a wide class of entire functions, which includes φ(z) = ez − 1, the latter equation has a non-constant entire solution.



1966 ◽  
Vol 15 (2) ◽  
pp. 121-123 ◽  
Author(s):  
S. L. Segal

Let f(z) be an entire function, M(r) the maximum of f(z) on ∣z∣=r, and λ>1. Let Eλ=Eλ(f{z:log∣f(z)≦(1-λ)log(M∣z∣)}, and denote the density of Eλbywhere m is planar measure.



Sign in / Sign up

Export Citation Format

Share Document