scholarly journals L2 Extension for jets of holomorphic sections of a Hermitian line Bundle

2005 ◽  
Vol 180 ◽  
pp. 1-34 ◽  
Author(s):  
Dan Popovici

AbstractLet (X, ω) be a weakly pseudoconvex Kähler manifold, Y ⊂ X a closed submanifold defined by some holomorphic section of a vector bundle over X, and L a Hermitian line bundle satisfying certain positivity conditions. We prove that for any integer k > 0, any section of the jet sheaf which satisfies a certain L2 condition, can be extended into a global holomorphic section of L over X whose L2 growth on an arbitrary compact subset of X is under control. In particular, if Y is merely a point, this gives the existence of a global holomorphic function with an L2 norm under control and with prescribed values for all its derivatives up to order k at that point. This result generalizes the L2 extension theorems of Ohsawa-Takegoshi and of Manivel to the case of jets of sections of a line bundle. A technical difficulty is to achieve uniformity in the constant appearing in the final estimate. To this end, we make use of the exponential map and of a Rauch-type comparison theorem for complete Riemannian manifolds.

Author(s):  
Dinh Tuan Huynh ◽  
Duc-Viet Vu

AbstractLet {f:\mathbb{C}\to X} be a transcendental holomorphic curve into a complex projective manifold X. Let L be a very ample line bundle on {X.} Let s be a very generic holomorphic section of L and D the zero divisor given by {s.} We prove that the geometric defect of D (defect of truncation 1) with respect to f is zero. We also prove that f almost misses general enough analytic subsets on X of codimension 2.


1998 ◽  
Vol 151 ◽  
pp. 25-36 ◽  
Author(s):  
Kensho Takegoshi

Abstract.A generalized maximum principle on a complete Riemannian manifold (M, g) is shown under a certain volume growth condition of (M, g) and its geometric applications are given.


1993 ◽  
Vol 131 ◽  
pp. 127-133 ◽  
Author(s):  
Qing-Ming Cheng

Let Mn be an n-dimensional Riemannian manifold minimally immersed in the unit sphere Sn+p (1) of dimension n + p. When Mn is compact, Chern, do Carmo and Kobayashi [1] proved that if the square ‖h‖2 of length of the second fundamental form h in Mn is not more than , then either Mn is totallygeodesic, or Mn is the Veronese surface in S4 (1) or Mn is the Clifford torus .In this paper, we generalize the results due to Chern, do Carmo and Kobayashi [1] to complete Riemannian manifolds.


Sign in / Sign up

Export Citation Format

Share Document