scholarly journals On the Behavior of Extensions of Vector Bundles Under the Frobenius Map

1972 ◽  
Vol 48 ◽  
pp. 73-89 ◽  
Author(s):  
Hiroshi Tango

Let k be an algebraically closed field of characteristic p > 0, and let X be a curve defined over k. The aim of this paper is to study the behavior of the Frobenius map F*: H1(X, E) → H1(X, F*E) for a vector bundle E.

1971 ◽  
Vol 43 ◽  
pp. 41-72 ◽  
Author(s):  
Tadao Oda

Let k be an algebraically closed field of characteristic p≧ 0, and let X be an abelian variety over k.The goal of this paper is to answer the following questions, when dim(X) = 1 and p≠0, posed by R. Hartshorne: (1)Is E(P) indecomposable, when E is an indecomposable vector bundle on X?(2)Is the Frobenius map F*: H1 (X, E) → H1 (X, E(p)) injective?We also partly answer the following question posed by D. Mumford:(3)Classify, or at least say anything about, vector bundles on X when dim (X) > 1.


1988 ◽  
Vol 111 ◽  
pp. 25-40 ◽  
Author(s):  
Tamafumi Kaneyama

For a free Z-module N of rank n, let T = TN be an n-dimensional algebraic torus over an algebraically closed field k defined by N. Let X = TN emb (Δ) be a smooth complete toric variety defined by a fan Δ (cf. [6]). Then T acts algebraically on X. A vector bundle E on X is said to be an equivariant vector bundle, if there exists an isomorphism ft: t*E → E for each k-rational point t in T, where t: X → X is the action of t. Equivariant vector bundles have T-linearizations (see Definition 1.2 and [2], [4]), hence we consider T-linearized vector bundles.


2019 ◽  
Vol 99 (2) ◽  
pp. 195-202
Author(s):  
LINGGUANG LI

Let $X$ be a smooth projective curve of genus $g\geq 2$ over an algebraically closed field $k$ of characteristic $p>0$. We show that for any integers $r$ and $d$ with $0<r<p$, there exists a maximally Frobenius destabilised stable vector bundle of rank $r$ and degree $d$ on $X$ if and only if $r\mid d$.


1975 ◽  
Vol 58 ◽  
pp. 25-68 ◽  
Author(s):  
Masaki Maruyama

Let X be a non-singular projective algebraic curve over an algebraically closed field k. D. Mumford introduced the notion of stable vector bundles on X as follows;DEFINITION ([7]). A vector bundle E on X is stable if and only if for any non-trivial quotient bundle F of E,where deg ( • ) denotes the degree of the first Chern class of a vector bundles and r( • ) denotes the rank of a vector bundle.


1975 ◽  
Vol 57 ◽  
pp. 65-86 ◽  
Author(s):  
Tamafumi Kaneyama

Let k be an algebraically closed field of arbitrary characteristic. Let T be an n-dimensional algebraic torus, i.e. T = Gm × · · · × Gm n-times), where Gm = Spec (k[t, t-1]) is the multiplicative group.


2018 ◽  
Vol 2018 (739) ◽  
pp. 159-205
Author(s):  
Matthias Wendt

Abstract The present paper studies the group homology of the groups {\operatorname{SL}_{2}(k[C])} and {\operatorname{PGL}_{2}(k[C])} , where {C=\overline{C}\setminus\{P_{1},\dots,P_{s}\}} is a smooth affine curve over an algebraically closed field k. It is well known that these groups act on a product of trees and the quotients can be described in terms of certain equivalence classes of rank two vector bundles on the curve {\overline{C}} . There is a natural subcomplex consisting of cells with suitably non-trivial isotropy group. The paper provides explicit formulas for the equivariant homology of this “parabolic subcomplex”. These formulas also describe group homology of {\operatorname{SL}_{2}(k[C])} above degree s, generalizing a result of Suslin in the case {s=1} .


2020 ◽  
Vol 20 (1) ◽  
pp. 109-116
Author(s):  
Masahiro Ohno

AbstractWe classify nef vector bundles on a smooth quadric surface with the first Chern class (2, 1) over an algebraically closed field of characteristic zero; we see in particular that such nef bundles are globally generated.


1975 ◽  
Vol 59 ◽  
pp. 135-148 ◽  
Author(s):  
Toshio Hosoh

On a complete non-singular curve defined over the complex number field C, a stable vector bundle is ample if and only if its degree is positive [3]. On a surface, the notion of the H-stability was introduced by F. Takemoto [8] (see § 1). We have a simple numerical sufficient condition for an H-stable vector bundle on a surface S defined over C to be ample; let E be an H-stable vector bundle of rank 2 on S with Δ(E) = c1(E)2 - 4c2(E) ≧ 0, then E is ample if and only if c1(E) > 0 and c2(E) > 0, provided S is an abelian surface, a ruled surface or a hyper-elliptic surface [9]. But the assumption above concerning Δ(E) evidently seems too strong. In this paper, we restrict ourselves to the projective plane P2 and a rational ruled surface Σn defined over an algebraically closed field k of arbitrary characteristic. We shall prove a finer assertion than that of [9] for an H-stable vector bundle of rank 2 to be ample (Theorem 1 and Theorem 3). Examples show that our result is best possible though it is not a necessary condition (see Remark (1) §2).


1981 ◽  
Vol 90 (3) ◽  
pp. 395-402
Author(s):  
Samuel A. Ilori

AbstractLet i: Y ↪ X be an inclusion map of non-singular irreducible algebraic quasi-projective varieties defined over an algebraically closed field. Let E be an algebraic vector bundle over X and H be a sub-bundle of the induced bundle, i*E. If j:F(H) ↪ F(E) is the corresponding inclusion map of (incomplete) flag bundles, then we derive the normal bundle N(F(H), F(E)) in terms of the bundles H and E, the tangent bundles of Y and X as well as the tautological bundles over F(H).


2019 ◽  
Vol 30 (12) ◽  
pp. 1950067
Author(s):  
Manish Kumar ◽  
A. J. Parameswaran

We define formal orbifolds over an algebraically closed field of arbitrary characteristic as curves together with some branch data. Their étale coverings and their fundamental groups are also defined. These fundamental groups approximate the fundamental group of an appropriate affine curve. We also define vector bundles on these objects and the category of orbifold bundles on any smooth projective curve. Analogues of various statements about vector bundles which are true in characteristic zero are also proved. Some of these are positive characteristic avatars of notions which appear in the second author’s work [A. J. Parmeswaran, Parabolic coverings I: Case of curves, J. Ramanujam Math. Soc. 25(3) (2010) 233–251.] in characteristic zero.


Sign in / Sign up

Export Citation Format

Share Document