ON MAXIMALLY FROBENIUS DESTABILISED VECTOR BUNDLES

2019 ◽  
Vol 99 (2) ◽  
pp. 195-202
Author(s):  
LINGGUANG LI

Let $X$ be a smooth projective curve of genus $g\geq 2$ over an algebraically closed field $k$ of characteristic $p>0$. We show that for any integers $r$ and $d$ with $0<r<p$, there exists a maximally Frobenius destabilised stable vector bundle of rank $r$ and degree $d$ on $X$ if and only if $r\mid d$.

2019 ◽  
Vol 30 (12) ◽  
pp. 1950067
Author(s):  
Manish Kumar ◽  
A. J. Parameswaran

We define formal orbifolds over an algebraically closed field of arbitrary characteristic as curves together with some branch data. Their étale coverings and their fundamental groups are also defined. These fundamental groups approximate the fundamental group of an appropriate affine curve. We also define vector bundles on these objects and the category of orbifold bundles on any smooth projective curve. Analogues of various statements about vector bundles which are true in characteristic zero are also proved. Some of these are positive characteristic avatars of notions which appear in the second author’s work [A. J. Parmeswaran, Parabolic coverings I: Case of curves, J. Ramanujam Math. Soc. 25(3) (2010) 233–251.] in characteristic zero.


1991 ◽  
Vol 122 ◽  
pp. 161-179 ◽  
Author(s):  
Yoshifumi Takeda

Let f: V → C be a fibration from a smooth projective surface onto a smooth projective curve over an algebraically closed field k. In the case of characteristic zero, almost all fibres of f are nonsingular. In the case of positive characteristic, it is, however, known that there exist fibrations whose general fibres have singularities. Moreover, it seems that such fibrations often have pathological phenomena of algebraic geometry in positive characteristic (see M. Raynaud [7], W. Lang [4]).


1988 ◽  
Vol 111 ◽  
pp. 25-40 ◽  
Author(s):  
Tamafumi Kaneyama

For a free Z-module N of rank n, let T = TN be an n-dimensional algebraic torus over an algebraically closed field k defined by N. Let X = TN emb (Δ) be a smooth complete toric variety defined by a fan Δ (cf. [6]). Then T acts algebraically on X. A vector bundle E on X is said to be an equivariant vector bundle, if there exists an isomorphism ft: t*E → E for each k-rational point t in T, where t: X → X is the action of t. Equivariant vector bundles have T-linearizations (see Definition 1.2 and [2], [4]), hence we consider T-linearized vector bundles.


2000 ◽  
Vol 43 (2) ◽  
pp. 129-137 ◽  
Author(s):  
E. Ballico

AbstractLet E be a stable rank 2 vector bundle on a smooth projective curve X and V(E) be the set of all rank 1 subbundles of E with maximal degree. Here we study the varieties (non-emptyness, irreducibility and dimension) of all rank 2 stable vector bundles, E, on X with fixed deg(E) and deg(L), L ∈ V(E) and such that .


2004 ◽  
Vol 174 ◽  
pp. 201-223 ◽  
Author(s):  
Indranil Biswas ◽  
Yogish I. Holla

AbstractLet E be a principal G–bundle over a smooth projective curve over an algebraically closed field k, where G is a reductive linear algebraic group over k. We construct a canonical reduction of E. The uniqueness of canonical reduction is proved under the assumption that the characteristic of k is zero. Under a mild assumption on the characteristic, the uniqueness is also proved when the characteristic of k is positive.


1975 ◽  
Vol 59 ◽  
pp. 135-148 ◽  
Author(s):  
Toshio Hosoh

On a complete non-singular curve defined over the complex number field C, a stable vector bundle is ample if and only if its degree is positive [3]. On a surface, the notion of the H-stability was introduced by F. Takemoto [8] (see § 1). We have a simple numerical sufficient condition for an H-stable vector bundle on a surface S defined over C to be ample; let E be an H-stable vector bundle of rank 2 on S with Δ(E) = c1(E)2 - 4c2(E) ≧ 0, then E is ample if and only if c1(E) > 0 and c2(E) > 0, provided S is an abelian surface, a ruled surface or a hyper-elliptic surface [9]. But the assumption above concerning Δ(E) evidently seems too strong. In this paper, we restrict ourselves to the projective plane P2 and a rational ruled surface Σn defined over an algebraically closed field k of arbitrary characteristic. We shall prove a finer assertion than that of [9] for an H-stable vector bundle of rank 2 to be ample (Theorem 1 and Theorem 3). Examples show that our result is best possible though it is not a necessary condition (see Remark (1) §2).


2014 ◽  
Vol 10 (08) ◽  
pp. 2187-2204
Author(s):  
Hsiu-Lien Huang ◽  
Chia-Liang Sun ◽  
Julie Tzu-Yueh Wang

Over the function field of a smooth projective curve over an algebraically closed field, we investigate the set of S-integral elements in a forward orbit under a rational function by establishing some analogues of the classical Siegel theorem.


1972 ◽  
Vol 48 ◽  
pp. 73-89 ◽  
Author(s):  
Hiroshi Tango

Let k be an algebraically closed field of characteristic p > 0, and let X be a curve defined over k. The aim of this paper is to study the behavior of the Frobenius map F*: H1(X, E) → H1(X, F*E) for a vector bundle E.


2010 ◽  
Vol 21 (11) ◽  
pp. 1505-1529 ◽  
Author(s):  
VICENTE MUÑOZ

Let X be a smooth projective curve of genus g ≥ 2 over ℂ. Fix n ≥ 2, d ∈ ℤ. A pair (E, ϕ) over X consists of an algebraic vector bundle E of rank n and degree d over X and a section ϕ ∈ H0(E). There is a concept of stability for pairs which depends on a real parameter τ. Let [Formula: see text] be the moduli space of τ-semistable pairs of rank n and degree d over X. Here we prove that the cohomology groups of [Formula: see text] are Hodge structures isomorphic to direct summands of tensor products of the Hodge structure H1(X). This implies a similar result for the moduli spaces of stable vector bundles over X.


1971 ◽  
Vol 43 ◽  
pp. 41-72 ◽  
Author(s):  
Tadao Oda

Let k be an algebraically closed field of characteristic p≧ 0, and let X be an abelian variety over k.The goal of this paper is to answer the following questions, when dim(X) = 1 and p≠0, posed by R. Hartshorne: (1)Is E(P) indecomposable, when E is an indecomposable vector bundle on X?(2)Is the Frobenius map F*: H1 (X, E) → H1 (X, E(p)) injective?We also partly answer the following question posed by D. Mumford:(3)Classify, or at least say anything about, vector bundles on X when dim (X) > 1.


Sign in / Sign up

Export Citation Format

Share Document