scholarly journals Dedekind sums for a fuchsian group, II

1974 ◽  
Vol 53 ◽  
pp. 171-187 ◽  
Author(s):  
Larry Joel Goldstein

In [1] we derived a generalization of Kronecker’s first limit formula. Our generalization was a limit formula for the Eisenstein series for an arbitrary cusp of a Fuchsian group Γ of the first kind operating on the complex upper half-plane H. In that work, we introduced Dedekind sums associated to the principal congruence subgroups Γ(N) of the elliptic modular group. The work of our preceding paper suggests a natural question: Is there a generalization of Kronecker’s second limit formula to the setting of a general Fuchsian group of the first kind? The answer to this question is the subject of this paper.

1969 ◽  
Vol 34 ◽  
pp. 129-142 ◽  
Author(s):  
Akio Orihara

Let Γ be a Fuchsian group (of finite type) acting on the upper half plane. To each parabolic cusp Ki (i = 1, …, h), corresponds a Eisenstein serie


1980 ◽  
Vol 88 (3) ◽  
pp. 409-423 ◽  
Author(s):  
Mark Sheingorn

Let Γ be a Fuchsian group of the first kind acting on the upper half plane H+. Let be a Ford fundamental region for Γ in H+. Let ξ be a real number (a limit point) and let L( = Lξ) = {ξ + iy|0 ≤ y < 1}. L can be broken into successive intervals each one of which can be mapped by an element of Γ into . Since L is a hyperbolic line (h-line), this gives us a set of h-arcs in which we will call the image.


1987 ◽  
Vol 39 (6) ◽  
pp. 1434-1445 ◽  
Author(s):  
Benjamin Fine

If d is a positive square free integer we let Od be the ring of integers in and we let Γd = PSL2(Od), the group of linear fractional transformationsand entries from Od {if d = 1, ad – bc = ±1}. The Γd are called collectively the Bianchi groups and have been studied extensively both as abstract groups and in automorphic function theory {see references}. Of particular interest has been Γ1 – the Picard group. Group theoretically Γ1, is very similar to the classical modular group M = PSL2(Z) both in its total structure [4, 6], and in the structure of its congruence subgroups [8]. Where Γ1 and M differ greatly is in their action on the complex place C. M is Fuchsian and therefore acts discontinuously in the upper half-plane and every subgroup has the same property.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 840
Author(s):  
Namhoon Kim

By considering a contour integral of a cotangent sum, we give a simple derivation of a transformation formula of the series A ( τ , s ) = ∑ n = 1 ∞ σ s − 1 ( n ) e 2 π i n τ for complex s under the action of the modular group on τ in the upper half plane. Some special cases directly give expressions of generalized Dedekind sums as cotangent sums.


1973 ◽  
Vol 50 ◽  
pp. 21-47 ◽  
Author(s):  
Larry Joel Goldstein

The well-known first limit formula of Kronecker asserts thatwhere z = x + iy is contained in the complex upper halfplane H, C = the Euler-Mascheroni constant, and η(z) is the Dedekind eta-function defined by


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Cai-Chang Li ◽  
Xiang-Gan Liu ◽  
Gui-Jun Ding

Abstract We propose to construct the finite modular groups from the quotient of two principal congruence subgroups as Γ(N′)/Γ(N″), and the modular group SL(2, ℤ) is ex- tended to a principal congruence subgroup Γ(N′). The original modular invariant theory is reproduced when N′ = 1. We perform a comprehensive study of $$ {\Gamma}_6^{\prime } $$ Γ 6 ′ modular symmetry corresponding to N′ = 1 and N″ = 6, five types of models for lepton masses and mixing with $$ {\Gamma}_6^{\prime } $$ Γ 6 ′ modular symmetry are discussed and some example models are studied numerically. The case of N′ = 2 and N″ = 6 is considered, the finite modular group is Γ(2)/Γ(6) ≅ T′, and a benchmark model is constructed.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Hyunseok Lee ◽  
Lee-Chae Jang

Abstract Dedekind sums occur in the transformation behavior of the logarithm of the Dedekind eta-function under substitutions from the modular group. In 1892, Dedekind showed a reciprocity relation for the Dedekind sums. Apostol generalized Dedekind sums by replacing the first Bernoulli function appearing in them by any Bernoulli functions and derived a reciprocity relation for the generalized Dedekind sums. In this paper, we consider the poly-Dedekind sums obtained from the Dedekind sums by replacing the first Bernoulli function by any type 2 poly-Bernoulli functions of arbitrary indices and prove a reciprocity relation for the poly-Dedekind sums.


1823 ◽  
Vol 113 ◽  
pp. 39-52

The observations which have been made during the last summer, confirm in a very decided manner the results which formed the subject of my last communication; in which I laid before the Society the nature of the differences that exist between the computed places of the principal Stars of the Greenwich Catalogue, and those deduced from actual observation. It is not my present intention to offer any explana­tion of the cause of these phenomena, although many obvious conjectures present themselves, the value of which it will require perhaps many years to determine. It is now my principal object to consider the force of that explanation of the differences in question, which will most readily occur to every astronomer, namely, that the whole may arise either from error committed by the observer, or from defect in the instruments of observation: this objection being the more weighty from the circumstance, that the observations of three distant periods are employed, and that an error in those of either period (but particularly of the two latter) would ma­terially affect the result now under consideration. I believe that every person, in proportion to his experience in the use of astronomical instruments, (even of the most unexceptionable construction), will be cautious in admitting the accuracy of any results, with whatever care the observations may have been made, which appear to militate against any received theory of astronomy; and I shall have occasion myself to show, from the great discordances between instru­ments of the highest reputation, that this distrust is but too well founded. More particularly ought our suspicion to be excited, when such anomalies are found to exist, as bear some direct proportion to the zenith distances of the stars observed. In all such cases we should never hesitate, I think, to ascribe the anomalies to defective observation. If therefore in the present instance, any part of the discordances in question can be shown to depend on polar or zenith distances, I shall willingly admit, as to such part of them at least, that they are no otherwise of importance, than as affording data for leading to the detection of some hitherto undiscovered errors. The anomalies, however, that have led me on to this enquiry, and to which alone I attach any importance, are found to de­pend rather on the right ascensions, than on the declinations of the stars. Accordingly I found, while collecting observa­tions to form a catalogue for the present period, that I could more nearly predict the deviation of a star from its computed place, by knowing its right ascension, than its declination. Now it is not easy to conceive in what way the error of an instrument for measuring declination, fixed in the meridian, can be occasioned by any circumstance depending on the right ascension of a star to be observed.


Archaeologia ◽  
1806 ◽  
Vol 15 ◽  
pp. 333-337
Author(s):  
John Adey Repton

When I was in Norwich, in July last, I made some drawings of a building then pulling down, and since almost destroyed. As the style and character of this building is of singular beauty, for the early date to which I suppose it to belong, I shall only describe the parts, by a reference to the drawings; after transcribing the following extract from Blomefield's History of Norfolk.


Sign in / Sign up

Export Citation Format

Share Document