Fuchsian Embeddings in the Bianchi Groups

1987 ◽  
Vol 39 (6) ◽  
pp. 1434-1445 ◽  
Author(s):  
Benjamin Fine

If d is a positive square free integer we let Od be the ring of integers in and we let Γd = PSL2(Od), the group of linear fractional transformationsand entries from Od {if d = 1, ad – bc = ±1}. The Γd are called collectively the Bianchi groups and have been studied extensively both as abstract groups and in automorphic function theory {see references}. Of particular interest has been Γ1 – the Picard group. Group theoretically Γ1, is very similar to the classical modular group M = PSL2(Z) both in its total structure [4, 6], and in the structure of its congruence subgroups [8]. Where Γ1 and M differ greatly is in their action on the complex place C. M is Fuchsian and therefore acts discontinuously in the upper half-plane and every subgroup has the same property.

1981 ◽  
Vol 22 (2) ◽  
pp. 185-197 ◽  
Author(s):  
Marvin I. Knopp

In the earlier article [7], I began the study of rational period functions for the modular group Γ(l) = SL(2, Z) (regarded as a group of linear fractional transformations) acting on the Riemann sphere. These are rational functions q(z) which occur in functional equations of the formwhere k∈Z and F is a function meromorphic in the upper half-plane ℋ, restricted in growth at the parabolic cusp ∞. The growth restriction may be phrased in terms of the Fourier expansion of F(z) at ∞:with some μ∈Z. If (1.1) and (1.2) hold, then we call F a modular integral of weight 2k and q(z) the period of F.


2019 ◽  
Vol 150 (3) ◽  
pp. 1095-1112 ◽  
Author(s):  
Ha Duy Hung ◽  
Luong Dang Ky ◽  
Thai Thuan Quang

AbstractThe aim of this paper is to characterize the non-negative functions φ defined on (0,∞) for which the Hausdorff operator $${\rm {\cal H}}_\varphi f(z) = \int_0^\infty f \left( {\displaystyle{z \over t}} \right)\displaystyle{{\varphi (t)} \over t}{\rm d}t$$is bounded on the Hardy spaces of the upper half-plane ${\rm {\cal H}}_a^p ({\open C}_ + )$, $p\in [1,\infty ]$. The corresponding operator norms and their applications are also given.


1980 ◽  
Vol 88 (3) ◽  
pp. 409-423 ◽  
Author(s):  
Mark Sheingorn

Let Γ be a Fuchsian group of the first kind acting on the upper half plane H+. Let be a Ford fundamental region for Γ in H+. Let ξ be a real number (a limit point) and let L( = Lξ) = {ξ + iy|0 ≤ y < 1}. L can be broken into successive intervals each one of which can be mapped by an element of Γ into . Since L is a hyperbolic line (h-line), this gives us a set of h-arcs in which we will call the image.


2006 ◽  
Vol 16 (04) ◽  
pp. 911-923 ◽  
Author(s):  
S. P. BANKS ◽  
SONG YI

We derive explicit differential equations for dynamical systems defined on generic surfaces applying elliptic and automorphic function theory to make uniform the surfaces in the upper half of the complex plane with the hyperbolic metric. By modifying the definition of the standard theta series we will determine general meromorphic systems on a fundamental domain in the upper half plane the solution trajectories of which "roll up" onto an appropriate surface of any given genus.


1990 ◽  
Vol 120 ◽  
pp. 35-49 ◽  
Author(s):  
Tadashi Yamazaki

Let Gn (resp. Γn) be the real symplectic (resp. Siegel modular) group of degree n. The Siegel cusp form is a holomorphic function on the Siegel upper half plane which satisfies functional equations relative to Γn and vanishes at the cusps.


1993 ◽  
Vol 35 (3) ◽  
pp. 307-323 ◽  
Author(s):  
Anthony J. F. Biagioli

The Dedekind eta-function is defined for any τ in the upper half-plane bywhere x = exp(2πiτ) and x1/24 = exp(2πiτ/24). By an eta-product we shall mean a functionwhere N ≥ 1 and eachrδ ∈ ℤ. In addition, we shall always assume that is an integer. Using the Legendre-Jacobi symbol (—), we define a Dirichlet character ∈ bywhen a is odd. If p is a prime for which ∈(p) ≠ 0and if F is a function with a Fourier seriesthen we define a Hecke operator Tp bywhereand


1979 ◽  
Vol 31 (5) ◽  
pp. 1107-1120 ◽  
Author(s):  
Peter C. Greiner

Let(1)and set(2)Here . Z is the “unique” (modulo multiplication by nonzero functions) holomorphic vector-field which is tangent to the boundary of the “degenerate generalized upper half-plane”(3)In our terminology t = Re z1. We note that ℒ is nowhere elliptic. To put it into context, ℒ is of the type □b, i.e. operators like ℒ occur in the study of the boundary Cauchy-Riemann complex. For more information concerning this connection the reader should consult [1] and [2].


2011 ◽  
Vol 07 (03) ◽  
pp. 671-693 ◽  
Author(s):  
ERNST-ULRICH GEKELER

Let Γ = GL (2, 𝔽q[T]) be the Drinfeld modular group, which acts on the rigid analytic upper half-plane Ω. We determine the zeroes of the coefficient modular forms aℓk on the standard fundamental domain [Formula: see text] for Γ on Ω, along with the dependence of |aℓk(z)| on [Formula: see text].


1982 ◽  
Vol 34 (5) ◽  
pp. 1183-1194 ◽  
Author(s):  
H. D. Fegan

The purpose of this paper is to study the operator Δ + q. Here Δ is the Laplace–Beltrami operator on a compact Lie group G and q is a matrix coefficient of a representation of G. We are able to calculate the powers of Δ + q acting on the function qku. This is done in Section 2 and the reader is refered there for definitions of the special functions q and u.The interest in the operator Δ + q comes originally from physics and in particular from the Schrödinger equation. This is described in [4]. Here we are restricting ourselves to mathematical questions and shall not consider any applications to physics.In this paper we take the heat equation with potential as(1.1)with , the upper half plane, and initial data f(x, 0) = qk(x)u(x).


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 840
Author(s):  
Namhoon Kim

By considering a contour integral of a cotangent sum, we give a simple derivation of a transformation formula of the series A ( τ , s ) = ∑ n = 1 ∞ σ s − 1 ( n ) e 2 π i n τ for complex s under the action of the modular group on τ in the upper half plane. Some special cases directly give expressions of generalized Dedekind sums as cotangent sums.


Sign in / Sign up

Export Citation Format

Share Document