scholarly journals Alternative polarizations of Borel fixed ideals

2012 ◽  
Vol 207 ◽  
pp. 79-93 ◽  
Author(s):  
Kohji Yanagawa

AbstractFor a monomial idealIof a polynomial ringS, apolarizationofIis a square-free monomial idealJof a larger polynomial ringsuch thatS/Iis a quotient of/Jby a (linear) regular sequence. We show that a Borel fixed ideal admits a nonstandard polarization. For example, while the usual polarization sendsours sends it tox1y2y3Using this idea, we recover/refine the results onsquare-free operationin the shifting theory of simplicial complexes. The present paper generalizes a result of Nagel and Reiner, although our approach is very different.

2015 ◽  
Vol 58 (2) ◽  
pp. 393-401
Author(s):  
Zhongming Tang

AbstractLet S = K[x1 , . . . , xn] be the polynomial ring in n-variables over a ûeld K and I a monomial ideal of S. According to one standard primary decomposition of I, we get a Stanley decomposition of the monomial factor algebra S/I. Using this Stanley decomposition, one can estimate the Stanley depth of S/I. It is proved that sdepthS(S/I) ≤ sizeS(I). When I is squarefree and bigsizeS(I) ≤ 2, the Stanley conjecture holds for S/I, i.e., sdepthS(S/I) ≥ depthS(S/I).


2011 ◽  
Vol 48 (2) ◽  
pp. 220-226
Author(s):  
Azeem Haider ◽  
Sardar Khan

Let S = K[x1,…,xn] be a polynomial ring in n variables over a field K. Stanley’s conjecture holds for the modules I and S/I, when I ⊂ S is a critical monomial ideal. We calculate the Stanley depth of S/I when I is a canonical critical monomial ideal. For non-critical monomial ideals we show the existence of a Stanley ideal with the same depth and Hilbert function.


10.37236/4894 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Mina Bigdeli ◽  
Jürgen Herzog ◽  
Takayuki Hibi ◽  
Antonio Macchia

Let $I\subset K[x_1,\ldots,x_n]$ be  a zero-dimensional monomial ideal, and $\Delta(I)$ be the simplicial complex whose Stanley--Reisner ideal is the polarization of $I$. It follows from a result of Soleyman Jahan that $\Delta(I)$ is shellable. We give a new short proof of this fact by providing an explicit shelling. Moreover, we show that  $\Delta(I)$ is even vertex decomposable. The ideal $L(I)$, which is defined to be the Stanley--Reisner ideal of the Alexander dual of $\Delta(I)$, has a linear resolution which is cellular and supported on a regular CW-complex. All powers of $L(I)$ have a linear resolution. We compute $\mathrm{depth}\ L(I)^k$ and show that $\mathrm{depth}\ L(I)^k=n$ for all $k\geq n$.


10.37236/6783 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Mitchel T. Keller ◽  
Stephen J. Young

We develop combinatorial tools to study the relationship between the Stanley depth of a monomial ideal $I$ and the Stanley depth of its compliment, $S/I$. Using these results we are able to prove that if $S$ is a polynomial ring with at most 5 indeterminates and $I$ is a square-free monomial ideal, then the Stanley depth of $S/I$ is strictly larger than the Stanley depth of $I$. Using a computer search, we are able to extend this strict inequality up to polynomial rings with at most 7 indeterminates. This partially answers questions asked by Propescu and Qureshi as well as Herzog.


Author(s):  
Hailong Dao ◽  
Alessandro De Stefani

Abstract We study ideal-theoretic conditions for a monomial ideal to be Golod. For ideals in a polynomial ring in three variables, our criteria give a complete characterization. Over such rings, we show that the product of two monomial ideals is Golod.


2017 ◽  
Vol 59 (3) ◽  
pp. 705-715
Author(s):  
S. A. SEYED FAKHARI

AbstractLet $\mathbb{K}$ be a field and S = ${\mathbb{K}}$[x1, . . ., xn] be the polynomial ring in n variables over the field $\mathbb{K}$. For every monomial ideal I ⊂ S, we provide a recursive formula to determine a lower bound for the Stanley depth of S/I. We use this formula to prove the inequality sdepth(S/I) ≥ size(I) for a particular class of monomial ideals.


2019 ◽  
Vol 19 (10) ◽  
pp. 2050201
Author(s):  
Ibrahim Al-Ayyoub

Let [Formula: see text] be a monomial ideal in a polynomial ring with two indeterminates over a field. Assume [Formula: see text] is contained in the integral closure of some ideal that is generated by two elements from the generating set of [Formula: see text]. We produce sharp upper bounds for each of the reduction number and the Ratliff–Rush reduction number of the ideal [Formula: see text]. Under certain hypotheses, we give the exact values of these reduction numbers, and we provide an explicit method for obtaining these sharp upper bounds.


2006 ◽  
Vol 13 (01) ◽  
pp. 47-56
Author(s):  
Zhongming Tang ◽  
Guifen Zhuang

Let Δ be a stable simplicial complex on n vertexes. Over an arbitrary base field K, the symmetric algebraic shifted complex Δs of Δ is defined. It is proved that the Betti numbers of the Stanley-Reisner ideals in the polynomial ring K[x1, x2, …, xn] of the symmetric algebraic shifted complex, exterior algebraic shifted complex and combinatorial shifted complex of Δ are equal.


2010 ◽  
Vol 149 (2) ◽  
pp. 229-246 ◽  
Author(s):  
LÊ TUÂN HOA ◽  
TRÂN NAM TRUNG

AbstractLet I, I11,. . ., I1q1,. . ., Ip1,. . ., Ipqp be monomial ideals of a polynomial ring R = K[X1,. . ., Xr] and Ln = I+∩jIn1j + ⋅ ⋅ ⋅ + ∩jIpjn. It is shown that the ai-invariant ai(R/Ln) is asymptotically a quasi-linear function of n for all n ≫ 0, and the limit limn→∞ad(R/Ln)/n exists, where d = dim(R/L1). A similar result holds if I11,. . ., I1q1,. . ., Ip1,. . ., Ipqp are replaced by their integral closures. Moreover all limits $\lim_{n\to\infty} a_i(R/(\cap_j \overline{I_{1j}^n} + \cdots + \cap_j \overline{I_{pj}^n}))/n $ also exist.As a consequence, it is shown that there are integers p > 0 and 0 ≤ e ≤ d = dim R/I such that reg(In) = pn + e for all n ≫ 0 and pn ≤ reg(In) ≤ pn + d for all n > 0 and that the asymptotic behavior of the Castelnuovo–Mumford regularity of ordinary symbolic powers of a square-free monomial ideal is very close to a linear function.


2016 ◽  
Vol 16 (07) ◽  
pp. 1750122
Author(s):  
Lizhong Chu ◽  
V. H. Jorge Pérez

Let [Formula: see text] be a polynomial ring over a field [Formula: see text] and [Formula: see text] a monomial ideal. We give some inequalities on Stanley regularity of monomial ideals. As consequences, we prove that [Formula: see text] and [Formula: see text] hold in the following cases: (1) [Formula: see text] is a complete intersection; (2) [Formula: see text] is an ideal of mixed products.


Sign in / Sign up

Export Citation Format

Share Document