Identification of potential protein partners that bind to the variant surface glycoprotein in Trypanosoma equiperdum

Parasitology ◽  
2017 ◽  
Vol 144 (7) ◽  
pp. 923-936 ◽  
Author(s):  
LIOMARY M. CARRASQUEL ◽  
JOSÉ L. ESCALONA ◽  
ALVARO ACOSTA-SERRANO ◽  
YURONG GUO ◽  
JOSÉ BUBIS

SUMMARYTrypanosoma equiperdum possesses a dense coat of a variant surface glycoprotein (VSG) that is used to evade the host immune response by a process known as antigenic variation. Soluble and membrane forms of the predominant VSG from the Venezuelan T. equiperdum TeAp-N/D1 strain (sVSG and mVSG, respectively) were purified to homogeneity; and antibodies against sVSG and mVSG were raised, isolated, and employed to produce anti-idiotypic antibodies that structurally mimic the VSG surface. Prospective VSG-binding partners were initially detected by far-Western blots, and then by immunoblots using the generated anti-idiotypic antibodies. Polypeptides of ~80 and 55 kDa were isolated when anti-idiotypic antibodies–Sepharose affinity matrixes were used as baits. Mass spectrometry sequencing yielded hits with various proteins from Trypanosoma brucei such as heat-shock protein 70, tryparedoxin peroxidase, VSG variants, expression site associated gene product 6, and two hypothetical proteins. In addition, a possible interaction with a protein homologous to the glutamic acid/alanine-rich protein from Trypanosoma congolense was also found. These results indicate that the corresponding orthologous gene products are candidates for VSG-interacting proteins in T. equiperdum.

1983 ◽  
Vol 3 (3) ◽  
pp. 410-414
Author(s):  
S Longacre ◽  
A Raibaud ◽  
U Hibner ◽  
G Buck ◽  
H Eisen ◽  
...  

Antigenic variation in Trypanosoma equiperdum is associated with the sequential expression of variant surface glycoprotein (VSG) genes in a process which involves gene duplication and transposition events. In this paper we present evidence that the genomic environment of the VSG-1 basic copy gene, the template for duplicated, expression-linked VSG-1 genes, differs in every trypanosome clone examined. This variation is thus independent of the expression of the VSG-1 gene, and it also appears to be restricted to the 3' genomic environment. It is also demonstrated that the DNA located 3' to the VSG-1 basic copy gene is moderately sensitive to digestion when the nuclei of either expressor or non-expressor trypanosomes are treated with DNase I.


Open Biology ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 190182 ◽  
Author(s):  
Núria Sima ◽  
Emilia Jane McLaughlin ◽  
Sebastian Hutchinson ◽  
Lucy Glover

African trypanosomes escape the mammalian immune response by antigenic variation—the periodic exchange of one surface coat protein, in Trypanosoma brucei the variant surface glycoprotein (VSG), for an immunologically distinct one. VSG transcription is monoallelic, with only one VSG being expressed at a time from a specialized locus, known as an expression site. VSG switching is a predominantly recombination-driven process that allows VSG sequences to be recombined into the active expression site either replacing the currently active VSG or generating a ‘new’ VSG by segmental gene conversion. In this review, we describe what is known about the factors that influence this process, focusing specifically on DNA repair and recombination.


1998 ◽  
Vol 18 (1) ◽  
pp. 198-205 ◽  
Author(s):  
Mike Cross ◽  
Martin C. Taylor ◽  
Piet Borst

ABSTRACT African trypanosomes undergo antigenic variation of their variant surface glycoprotein (VSG) coat to avoid being killed by their mammalian hosts. The active VSG gene is located in one of many telomeric expression sites. Replacement of the VSG gene in the active site or switching between expression sites can give rise to a new VSG coat. To study Trypanosoma brucei VSG expression site inactivation rather than VSG gene switching, it is useful to have an in vitro negative-selection system independent of the VSG. We have achieved this aim by using a viral thymidine kinase (TK) gene. Following integration of the TK gene downstream of the 221a VSG expression site promoter, transformant cell lines became sensitive to the nucleoside analog 1-(2-deoxy-2-fluoro-8-d-arabinofuranosyl)-5-iodouracil. These TK trypanosomes were able to revert to resistance at a rate approaching 10−5 per cell per generation. The majority of revertants expressed a new VSG gene even though there had been no selection against the VSG itself. Analysis of these switched variants showed that some had shut down TK expression via an in situ expression site switch. However, most variants had the complete 221 expression site deleted and another VSG expression site activated. We speculate that a new VSG expression site cannot switch on without inactivation of the old site.


1986 ◽  
Vol 6 (8) ◽  
pp. 2950-2956 ◽  
Author(s):  
A Raibaud ◽  
G Buck ◽  
T Baltz ◽  
H Eisen

Variant surface glycoprotein (VSG) genes of African trypanosomes are expressed when they are inserted into one of several telomere-linked expression sites. We cloned and characterized an 11-kilobase (kb) DNA fragment located upstream of an expressed VSG gene. A DNA sequence of 1.8 kb that is located immediately upstream of the inserted VSG gene contains sequences homologous to the 76-base-pair repeats described as being upstream of VSG genes in Trypanosoma brucei (D. A. Campbell, M. P. Van Bree, and J. C. Boothroyd, Nucleic Acids Res. 12:2759-2774). There are no such sequences elsewhere in the 11-kb cloned region. Southern blot analysis using probes from the cloned region revealed multiple unlinked copies of the same or very similar regions. At least three of these are located near telomeres, and two have been shown to be used for the expression of known Trypanosoma equiperdum VSG genes. Like VSG genes, the upstream sequences themselves can be duplicated and deleted. The choice of expression site to be used by a duplicated VSG gene is nonrandom; the site used for expression of the parental VSG gene is strongly favored for use in the daughter variant. Furthermore, even when the parental expression site is not used, the VSG gene occupying it is replaced. Thus, an active expression site is a preferential target for gene conversion in the next variation event.


1986 ◽  
Vol 6 (8) ◽  
pp. 2950-2956
Author(s):  
A Raibaud ◽  
G Buck ◽  
T Baltz ◽  
H Eisen

Variant surface glycoprotein (VSG) genes of African trypanosomes are expressed when they are inserted into one of several telomere-linked expression sites. We cloned and characterized an 11-kilobase (kb) DNA fragment located upstream of an expressed VSG gene. A DNA sequence of 1.8 kb that is located immediately upstream of the inserted VSG gene contains sequences homologous to the 76-base-pair repeats described as being upstream of VSG genes in Trypanosoma brucei (D. A. Campbell, M. P. Van Bree, and J. C. Boothroyd, Nucleic Acids Res. 12:2759-2774). There are no such sequences elsewhere in the 11-kb cloned region. Southern blot analysis using probes from the cloned region revealed multiple unlinked copies of the same or very similar regions. At least three of these are located near telomeres, and two have been shown to be used for the expression of known Trypanosoma equiperdum VSG genes. Like VSG genes, the upstream sequences themselves can be duplicated and deleted. The choice of expression site to be used by a duplicated VSG gene is nonrandom; the site used for expression of the parental VSG gene is strongly favored for use in the daughter variant. Furthermore, even when the parental expression site is not used, the VSG gene occupying it is replaced. Thus, an active expression site is a preferential target for gene conversion in the next variation event.


1997 ◽  
Vol 17 (2) ◽  
pp. 833-843 ◽  
Author(s):  
R McCulloch ◽  
G Rudenko ◽  
P Borst

African trypanosomes undergo antigenic variation of their variant surface glycoprotein (VSG) coat to avoid immune system-mediated killing by their mammalian host. An important mechanism for switching the expressed VSG gene is the duplicative transposition of a silent VSG gene into one of the telomeric VSG expression sites of the trypanosome, resulting in the replacement of the previously expressed VSG gene. This process appears to be a gene conversion reaction, and it has been postulated that sequences within the expression site may act to initiate and direct the reaction. All bloodstream form expression sites contain huge arrays (many kilobase pairs) of 70-bp repeat sequences that act as the 5' boundary of gene conversion reactions involving most silent VSG genes. For this reason, the 70-bp repeats seemed a likely candidate to be involved in the initiation of switching. Here, we show that deletion of the 70-bp repeats from the active expression site does not affect duplicative transposition of VSG genes from silent expression sites. We conclude that the 70-bp repeats do not appear to function as indispensable initiation sites for duplicative transposition and are unlikely to be the recognition sequence for a sequence-specific enzyme which initiates recombination-based VSG switching.


1983 ◽  
Vol 3 (3) ◽  
pp. 410-414 ◽  
Author(s):  
S Longacre ◽  
A Raibaud ◽  
U Hibner ◽  
G Buck ◽  
H Eisen ◽  
...  

Antigenic variation in Trypanosoma equiperdum is associated with the sequential expression of variant surface glycoprotein (VSG) genes in a process which involves gene duplication and transposition events. In this paper we present evidence that the genomic environment of the VSG-1 basic copy gene, the template for duplicated, expression-linked VSG-1 genes, differs in every trypanosome clone examined. This variation is thus independent of the expression of the VSG-1 gene, and it also appears to be restricted to the 3' genomic environment. It is also demonstrated that the DNA located 3' to the VSG-1 basic copy gene is moderately sensitive to digestion when the nuclei of either expressor or non-expressor trypanosomes are treated with DNase I.


2003 ◽  
Vol 2 (1) ◽  
pp. 84-94 ◽  
Author(s):  
Mihaela Lorger ◽  
Markus Engstler ◽  
Matthias Homann ◽  
H. Ulrich Göringer

ABSTRACT African trypanosomes cause sleeping sickness in humans and Nagana in cattle. The parasites multiply in the blood and escape the immune response of the infected host by antigenic variation. Antigenic variation is characterized by a periodic change of the parasite protein surface, which consists of a variant glycoprotein known as variant surface glycoprotein (VSG). Using a SELEX (systematic evolution of ligands by exponential enrichment) approach, we report the selection of small, serum-stable RNAs, so-called aptamers, that bind to VSGs with subnanomolar affinity. The RNAs are able to recognize different VSG variants and bind to the surface of live trypanosomes. Aptamers tethered to an antigenic side group are capable of directing antibodies to the surface of the parasite in vitro. In this manner, the RNAs might provide a new strategy for a therapeutic intervention to fight sleeping sickness.


Sign in / Sign up

Export Citation Format

Share Document