rna aptamers
Recently Published Documents


TOTAL DOCUMENTS

546
(FIVE YEARS 138)

H-INDEX

52
(FIVE YEARS 8)

2022 ◽  
Vol 5 (4) ◽  
pp. e202101193
Author(s):  
Megumi Akamatsu ◽  
Takenari Yamashita ◽  
Sayaka Teramoto ◽  
Zhen Huang ◽  
Janet Lynch ◽  
...  

In motor neurons of sporadic amyotrophic lateral sclerosis (ALS) patients, the RNA editing at the glutamine/arginine site of the GluA2 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors is defective or incomplete. As a result, AMPA receptors containing the abnormally expressed, unedited isoform of GluA2 are highly Ca2+-permeable, and are responsible for mediating abnormal Ca2+ influx, thereby triggering motor neuron degeneration and cell death. Thus, blocking the AMPA receptor–mediated, abnormal Ca2+ influx is a potential therapeutic strategy for treatment of sporadic ALS. Here, we report a study of the efficacy and safety of two RNA aptamers targeting AMPA receptors on the ALS phenotype of AR2 mice. A 12-wk continuous, intracerebroventricular infusion of aptamers to AR2 mice reduced the progression of motor dysfunction, normalized TDP-43 mislocalization, and prevented death of motor neurons. Our results demonstrate that the use of AMPA receptor aptamers as a novel class of AMPA receptor antagonists is a promising strategy for developing an ALS treatment approach.


2022 ◽  
Author(s):  
Tingting Xu ◽  
Yao Sun ◽  
Sha Yu ◽  
Shaojun Wu ◽  
Yu Su ◽  
...  

A fluorogenic RNA aptamers nanodevice integrating the entropy-driven RNA amplifier with near-infrared (NIR) light controller, affording high contrast and sensitivity for imaging the low-abundance mRNA in living cells. The design...


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 86
Author(s):  
Prabhat K. Mallik ◽  
Kimi Nishikawa ◽  
Pramit Mallik ◽  
Hua Shi

Unlike microbes that infect the human body, cancer cells are descended from normal cells and are not easily recognizable as “foreign” by the immune system of the host. However, if the malignant cells can be specifically earmarked for attack by a synthetic “designator”, the powerful effector mechanisms of the immune response can be conscripted to treat cancer. To implement this strategy, we have been developing aptamer-derived molecular adaptors to invoke synthetic immune responses against cancer cells. Here we describe multi-valent aptamers that simultaneously bind target molecules on the surface of cancer cells and an activated complement protein, which would tag the target molecules and their associated cells as “foreign” and trigger multiple effector mechanisms. Increased deposition of the complement proteins on the surface of cancer cells via aptamer binding to membrane targets could induce the formation of the membrane attack complex or cytotoxic degranulation by phagocytes and natural killer cells, thereby causing irreversible destruction of the targeted cells. Specifically, we designed and constructed a bi-functional aptamer linking EGFR and C3b/iC3b, and used it in a cell-based assay to cause lysis of MDA-MB-231 and BT-20 breast cancer cells, with either human or mouse serum as the source of complement factors.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chenfei Shen ◽  
Xianwei Wang ◽  
Xiao He

Fluorescent RNA aptamers have been successfully applied to track and tag RNA in a biological system. However, it is still challenging to predict the excited-state properties of the RNA aptamer–fluorophore complex with the traditional electronic structure methods due to expensive computational costs. In this study, an accurate and efficient fragmentation quantum mechanical (QM) approach of the electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) scheme was applied for calculations of excited-state properties of the RNA aptamer–fluorophore complex. In this method, the excited-state properties were first calculated with one-body fragment quantum mechanics/molecular mechanics (QM/MM) calculation (the excited-state properties of the fluorophore) and then corrected with a series of two-body fragment QM calculations for accounting for the QM effects from the RNA on the excited-state properties of the fluorophore. The performance of the EE-GMFCC on prediction of the absolute excitation energies, the corresponding transition electric dipole moment (TEDM), and atomic forces at both the TD-HF and TD-DFT levels was tested using the Mango-II RNA aptamer system as a model system. The results demonstrate that the calculated excited-state properties by EE-GMFCC are in excellent agreement with the traditional full-system time-dependent ab initio calculations. Moreover, the EE-GMFCC method is capable of providing an accurate prediction of the relative conformational excited-state energies for different configurations of the Mango-II RNA aptamer system extracted from the molecular dynamics (MD) simulations. The fragmentation method further provides a straightforward approach to decompose the excitation energy contribution per ribonucleotide around the fluorophore and then reveals the influence of the local chemical environment on the fluorophore. The applications of EE-GMFCC in calculations of excitation energies for other RNA aptamer–fluorophore complexes demonstrate that the EE-GMFCC method is a general approach for accurate and efficient calculations of excited-state properties of fluorescent RNAs.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6365
Author(s):  
Christian Bailly ◽  
Xavier Thuru ◽  
Bruno Quesnel

The disaccharide lactose is an excipient commonly used in pharmaceutical products. The two anomers, α- and β-lactose (α-L/β-L), differ by the orientation of the C-1 hydroxyl group on the glucose unit. In aqueous solution, a mutarotation process leads to an equilibrium of about 40% α-L and 60% β-L at room temperature. Beyond a pharmaceutical excipient in solid products, α-L has immuno-modulatory effects and functions as a major regulator of TIM-3/Gal-9 immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of the co-inhibitory checkpoint TIM-3 expressed on T cells with anti-TIM-3 antibodies represents a promising approach to combat different onco-hematological diseases, in particular myelodysplastic syndromes and acute myeloid leukemia. In parallel, the discovery and development of anti-TIM-3 small molecule ligands is emerging, including peptides, RNA aptamers and a few specifically designed heterocyclic molecules. An alternative option consists of targeting the different ligands of TIM-3, notably Gal-9 recognized by α-lactose. Modulation of the TIM-3/Gal-9 checkpoint can be achieved with both α- and β-lactose. Moreover, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. The present review provides a complete analysis of the pharmaceutical and galectin-related biological functions of (α/β)-lactose. A focus is made on the capacity of lactose and Gal-9 to modulate both the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. Modulation of the TIM-3/Gal-9 checkpoint is a promising approach for the treatment of cancers and the role of lactose in this context is discussed. The review highlights the immuno-regulatory functions of lactose, and the benefit of the molecule well beyond its use as a pharmaceutical excipient.


Author(s):  
Nada Bejar ◽  
Trinh Tat ◽  
Daniel Kiss

Abstract Purpose of review: RNA therapeutics are a new and rapidly expanding class of drugs to prevent or treat a wide spectrum of diseases. We discuss the defining characteristics of the diverse family of molecules under the RNA therapeutics umbrella. Recent findings:RNA therapeutics are designed to regulate gene expression in a transient manner. For example, depending upon the strategy employed, RNA therapies offer the versatility to replace, supplement, correct, suppress, or eliminate the expression of a targeted gene. RNA therapies include antisense nucleotides, microRNAs and small interfering RNAs, RNA aptamers, and messenger RNAs. Further, we discuss the mechanism(s) by which different RNA therapies either reduce or increase the expression of their targets. Summary: We review the RNA therapeutics approved (and those in trials) to treat cardiovascular indications. RNA-based therapeutics are a new, rapidly growing class of drugs that will offer new alternatives for an increasing array of cardiovascular conditions.


2021 ◽  
Vol 28 ◽  
Author(s):  
Raj Kumar Sen ◽  
Priyanka Prabhakar ◽  
Neha Bisht ◽  
Monika Patel ◽  
Shruti Mishra ◽  
...  

: Current advances in constructing functional nanomaterials and elegantly designed nanostructures have opened up new possibilities for the fabrication of viable field biosensors. Two-dimensional materials (2DMs) have fascinated much attention due to their chemical, optical, physicochemical, and electronic properties. They are ultrathin nanomaterials with unique properties such as high surface-to-volume ratio, surface charge, shape, high anisotropy, and adjustable chemical functionality. 2DMs such as graphene-based 2D materials, Silicate clays, layered double hydroxides (LDHs), MXenes, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs) offer intensified physicochemical and biological functionality and have proven to be very promising candidates for biological applications and technologies. 2DMs have a multivalent structure that can easily bind to single-stranded DNA/RNA (aptamers) through covalent, non-covalent, hydrogen bond, and π-stacking interactions, whereas aptamers have a small size, excellent chemical stability, and low immunogenicity with high affinity and specificity. This review discussed the potential of various 2D material-based aptasensor for diagnostic applications, e.g., protein detection, environmental monitoring, pathogens detection, etc.


2021 ◽  
Author(s):  
Alicia Climent Catala ◽  
Thomas E Ouldridge ◽  
Guy-Bart V Stan ◽  
Wooli Bae

Synthetic RNA systems offer unique advantages such as faster response, increased specificity, and programmability compared to conventional protein-based networks. Here, we demonstrate an in-vitro RNA-based toggle switch using RNA aptamers ca- pable of inhibiting the transcriptional activity of T7 or SP6 RNA polymerases. The activities of both polymerases are monitored simultaneously by using Broccoli and Malachite green light-up aptamer systems. In our toggle switch, a T7 promoter drives the expression of SP6 inhibitory aptamers, and an SP6 promoter expresses T7 in- hibitory aptamers. We show that the two distinct states originating from the mutual inhibition of aptamers can be toggled by adding DNA sequences to sequester the RNA inhibitory aptamers. Finally, we assessed our RNA-based toggle switch in cell-like con- ditions by introducing controlled degradation of RNAs using a mix of RNases. Our results demonstrate that the RNA-based toggle switch could be used as a control ele- ment for nucleic acid networks in synthetic biology applications.


2021 ◽  
pp. 113774
Author(s):  
Bradley I. Harding ◽  
Nina M. Pollak ◽  
Darko Stefanovic ◽  
Joanne Macdonald
Keyword(s):  

Author(s):  
Ram Kothandan ◽  
Pavithra Uthayasooriyan ◽  
Sivaranjani Vairamani

Abstract Background Recent outbreak of deadly Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) urges the scientist to identify the potential vaccine or drug to control the disease. SARS-CoV-2 with its single stranded RNA genome (length ~ 30 kb) is enveloped with active spike proteins. The genome is non-segmental with 5’-cap and 3’-poly tail and acts as a mRNA for the synthesis of replicase polyproteins. The replicase gene lying downstream to 5’-end encodes for non-structural protein, which in turn pose multiple functions ranging from envelope to nucleocapsid development. This study aims to identify the highly stable, effective and less toxic single strand RNA-based aptamers against non-structural protein 10 (NSP10). NSP10 is the significant activator of methyltransferase enzymes (NSP14 and NSP16) in SARS-CoV-2. Inhibiting the activation of methyltransferase leads to partial viral RNA capping or lack of capping, which makes the virus particles susceptible to host defence system. Results In this study, we focused on designing RNA aptamers through computational approach, docking of protein-aptamer followed by molecular dynamics simulation to perceive the binding stability of complex. Docking study reveals the high binding affinity of three aptamers namely RNA-053, 001, 010 to NSP10 with the HADDOCK score of − 88.5 ± 7.0, − 87.7 ± 11.5, − 86.1 ± 12 respectively. Molecular Dynamics suggests high conformational stability between the aptamer and the protein. Among the screened aptamers two aptamers maintained at least 3-4 intermolecular H-bonds throughout the simulation period. Conclusions The study identifies the potential aptamer candidate against less investigated but significant antiviral target i.e., NSP10/NSP16 interface complex.


Sign in / Sign up

Export Citation Format

Share Document