Control of Volunteer Corn and Giant Foxtail in Soybeans

Weed Science ◽  
1976 ◽  
Vol 24 (3) ◽  
pp. 253-256 ◽  
Author(s):  
Robert N. Andersen

In field studies, HOE 22870 [4-(4′-chlorophenoxy)-phenoxy-α-propionic-isobutylester] and HOE 23408 methyl 2-[4-(2,4-dichlorophenoxy)phenoxy] propanoate at 0.84 to 3.36 kg/ha were sprayed over the top of soybeans [Glycine max(L.) Merr.], corn (Zea maysL.), and giant foxtail (Setaria faberiHerrm.). Rates of 0.84 or 1.68 kg/ha of either herbicide controlled corn and giant foxtail. Soybeans tolerated 3.36 kg/ha (the highest rate used) of either herbicide. Both herbicides performed quite similarly, but HOE 22870 was generally more effective on giant foxtail and less effective on corn than was HOE 23408. The optimum time of application, in terms of soybean development, was the first trifoliolate stage. At this stage, corn had four to five leaves and giant foxtail had three to five leaves. HOE 23408 was applied to 32 inbred lines of corn in a greenhouse study. Several inbreds had considerable tolerance. When HOE 23408 at 0.56 kg/ha was applied to these 32 inbreds in a field study, control ranged from 100% for the most susceptible inbred to 22% for the most resistant inbred. At 1.12 kg/ha, control of corn ranged from 100% to 42%.

Weed Science ◽  
1989 ◽  
Vol 37 (4) ◽  
pp. 600-603 ◽  
Author(s):  
Jon P. Chernicky ◽  
Roger Gast ◽  
Fred W. Slife

Corn and giant foxtail response to foliar-applied sethoxydim at 67, 134, and 200 g ai/ha was evaluated in field studies. Sethoxydim applied over the top of corn (60 cm tall) caused greater whorl damage and reduced corn grain yield more than postdirected sethoxydim. Sethoxydim controlled giant foxtail best when used in conjunction with a preemergence application of metolachlor (2.2 kg/ha) and atrazine (1.7 kg/ha).


1993 ◽  
Vol 7 (4) ◽  
pp. 872-878 ◽  
Author(s):  
George Kapusta ◽  
Ronald F. Krausz ◽  
Joseph L. Matthews

Field studies were conducted in 1991 and 1992 to evaluate the duration of giant foxtail control in no-till soybean with MON 13200 alone and with imazaquin applied up to 2 mo prior to planting. MON 13200 at rates ranging from 224 to 448 g ai/ha applied up to 57 d before planting controlled 97 to 99% of giant foxtail averaged over years. MON 13200 plus imazaquin applied approximately 45 or 30 d before planting controlled 92 to 99% of giant foxtail compared with 53, 64, and 65% and 61, 69, and 78% in plots treated with alachlor, metolachlor, or pendimethalin plus imazaquin, respectively. Differences in control of giant foxtail among the herbicides evaluated were minimal when applied 15 or 0 d before planting. Little or no soybean injury was observed in 1991; up to 30% was observed in 1992 but final soybean height was not affected.


Weed Science ◽  
1997 ◽  
Vol 45 (6) ◽  
pp. 771-776 ◽  
Author(s):  
Bryan G. Young ◽  
Stephen E. Hart

Field studies were conducted at Dekalb and Urbana, IL, in 1995 and 1996 to evaluate the effectiveness of sethoxydim for giant foxtail control in sethoxydim-resistant (SR) corn. Experiments studied sequential and total postemergence applications of grass herbicide standards compared to sethoxydim. Additional studies evaluated the compatibility of sethoxydim with postemergence broadleaf herbicides. Metolachlor plus atrazine and metolachlor followed by dicamba plus atrazine gave at least 88% control of giant foxtail at both locations in both years. Metolachlor plus flumetsulam plus clopyralid provided 90% or greater grass control over all experiments, with the exception of only 75% control at Dekalb in 1995 due to a heavy giant foxtail infestation. In comparison, flumetsulam plus clopyralid followed by postemergence applications of sethoxydim or nicosulfuron provided the same level of grass control as preemergence metolachlor, except at Dekalb in 1995 where control was 72% for both sethoxydim and nicosulfuron. Sequential applications of sethoxydim increased control of giant foxtail compared to a single sethoxydim application in 1995. Sethoxydim applied alone controlled giant foxtail 8% better than nicosulfuron at Urbana in 1996. Postemergence sethoxydim applied alone provided 87% or better control of giant foxtail. Sethoxydim performance was consistent when applied with flumetsulam plus clopyralid plus 2,4-D (NAF-73), halosulfuron plus dicamba, and bromoxynil. The efficacy of sethoxydim was reduced in combination with dicamba plus atrazine in three of the four trials, and bentazon plus atrazine as well as primisulfuron plus prosulfuron in all trials. Sethoxydim outperformed nicosulfuron in combinations with bromoxynil at Urbana. These studies indicate sethoxydim has excellent potential to be used in corn for postemergence control of giant foxtail.


Weed Science ◽  
1989 ◽  
Vol 37 (4) ◽  
pp. 591-595 ◽  
Author(s):  
Ronald L. Ritter ◽  
Lisa M. Kaufman ◽  
Thomas J. Monaco ◽  
William P. Novitzky ◽  
Donald E. Moreland

Triazine-resistant giant foxtail was identified in 1984 near Delta, PA. In field studies conducted from 1985 to 1987, preemergence applications of atrazine with cyanazine or simazine provided poor (≤60%) season-long control of this annual grass in no-tillage corn. Best season-long preemergence control was obtained with metolachlor or microencapsulated formulations of alachlor or EPTC. Postemergence applications of cyanazine or tridiphane + atrazine + crop oil provided poor giant foxtail control. Postdirected applications of paraquat resulted in fair (≥70%) control of giant foxtail through midseason. In greenhouse studies, triazineresistant (R) giant foxtail tolerated preemergence applications of atrazine or simazine at dosages to 9.0 kg ai/ha. Triazine-sensitive (S) giant foxtail was injured by 2.2 kg/ha and higher rates of atrazine and simazine. In laboratory studies, the I50for inhibition by atrazine of photoinduced electron transport in thylakoids isolated from S and R biotypes was determined to be 0.24 and 205 μM, respectively. The differential sensitivity was paralleled by simazine. However, the limited solubility of simazine prevented determination of an I50value with thylakoids from the R biotype.


1998 ◽  
Vol 12 (1) ◽  
pp. 32-36 ◽  
Author(s):  
William G. Johnson ◽  
Jeffrey S. Dilbeck ◽  
Michael S. Defelice ◽  
J. Andrew Kendig

Field studies were conducted at three locations in 1993 and 1994 to evaluate weed control and crop response to combinations of glyphosate, metolachlor, 0.5 X and 1 X label rates of chlorimuron plus metribuzin applied prior to planting (PP), and 0.5 X and 1 X label rates of imazethapyr applied early postemergence (EPOST) or postemergence (POST) in no-till narrow-row soybean production. Giant foxtail densities were reduced with sequential PP followed by (fb) EPOST or POST treatments. Large crabgrass was reduced equivalently with all herbicide combinations involving chlorimuron plus metribuzin PP fb imazethapyr. Common cocklebur control was variable but was usually greater with treatments that included imazethapyr. Ivyleaf morningglory densities were not reduced with any herbicide combinations. Sequential PP fb EPOST or POST treatments tended to provide slightly better weed suppression than PP-only treatments, but the difference was rarely significant. Soybean yields with treatments utilizing 0.5 X rates were usually equal to 1 X rates.


Weed Science ◽  
1982 ◽  
Vol 30 (3) ◽  
pp. 316-320 ◽  
Author(s):  
Joaquim J.V. Rodrigues ◽  
A. Douglas Worsham ◽  
Frederick T. Corbin

Glyphosate [N-(phosphonomethyl)glycine] applied at 1.1 kg/ha to wheat [Triticum aestivum(L.) ‘Arthur 71′] plants increased height and fresh weight of soybean [Glycine max(L.) Merr. ‘Ransom′] seedlings planted in the pot at time of application of the glyphosate as the number of wheat plants treated increased from 5 to 30/pot. Height and fresh weight of the soybean seedlings also increased as the rate of glyphosate applied to wheat plants (5/pot) increased from 1.1 to 6.7 kg/ha. Increasing the rate of glyphosate from 1.1 to 6.7 kg/ha, however, reduced the height and fresh weight of soybeans when 30 wheat plants/pot were treated. In addition, when 6.7 kg/ha of glyphosate were applied to wheat plants, soybean-seedling plant height and fresh weight decreased as the density of wheat plants per pot increased from 5 to 30. The14C-glyphosate exuded into the soil from treated wheat plants was characterized by thin-layer chromatography. Trace amounts of the radio-label were present on thin-layer plates of leaf and stem extracts of corn (Zea maysL.) plants, which were growing in the same pots with the treated wheat plants. The zone of activity had the same Rf value as the glyphosate standard.


Weed Science ◽  
1996 ◽  
Vol 44 (4) ◽  
pp. 939-943 ◽  
Author(s):  
Ribas A. Vidal ◽  
Thomas T. Bauman

Experiments were conducted from 1992 through 1994 to determine the effect of 0 to 12 Mg ha−1of surface wheat residues (SWR) on giant foxtail density and crown node length, and soybean yield. Giant foxtail density decreased as SWR increased from 0 to 12 Mg ha−1. SWR of 6 to 12 Mg ha−1reduced giant foxtail density by 2 to 50 % compared to bare soil. The crown node of giant foxtail was 2 cm above the soil surface with 12 Mg ha−1of SWR. Frost in 1992 injured soybean more than weeds in plots with SWR while soybean in soil with no SWR was not injured. In absence of frost in 1993 and 1994, yield of weedy soybean increased 20 to 29%, respectively, with the increase of SWR from 0 to 6 Mg ha−1. In weed-free plots, soybean yield was similar across all SWR levels. These results confirm the hypothesis that high levels of SWR increased soybean yield in weedy plots because of decreased giant foxtail infestation.


1997 ◽  
Vol 11 (3) ◽  
pp. 602-607 ◽  
Author(s):  
Eric Spandl ◽  
Thomas L. Rabaey ◽  
James J. Kells ◽  
R. Gordon Harvey

Optimal application timing for dicamba–acetamide tank mixes was examined in field studies conducted in Michigan and Wisconsin from 1993 to 1995. Dicamba was tank mixed with alachlor, metolachlor, or SAN 582H and applied at planting, 7 d after planting, and 14 d after planting. Additional dicamba plus alachlor tank mixes applied at all three timings were followed by nicosulfuron postemergence to determine the effects of noncontrolled grass weeds on corn yield. Delaying application of dicamba–acetamide tank mixes until 14 d after planting often resulted in lower and less consistent giant foxtail control compared with applications at planting or 7 d after planting. Corn grain yield was reduced at one site where giant foxtail control was lower when application was delayed until 14 d after planting. Common lambsquarters control was excellent with 7 or 14 d after planting applications. At one site, common lambsquarters control and corn yield was reduced by application at planting. Dicamba–alachlor tank mixes applied 7 d after planting provided similar weed control or corn yield, while at planting and 14 d after planting applications provided less consistent weed control or corn yield than a sequential alachlor plus dicamba treatment or an atrazine-based program.


Weed Science ◽  
1988 ◽  
Vol 36 (2) ◽  
pp. 207-214 ◽  
Author(s):  
Douglas D. Buhler

Application time did not greatly influence control of velvetleaf (Abutilon theophrastiMedik. # ABUTH) or common lambsquarters (Chenopodium albumL. # CHEAL) in no-till corn (Zea maysL. ‘Pioneer 3747’) with fluorochloridone {3-chloro-4-(chloromethyl)-1-[3-(trifluoromethyl) phenyl]-2-pyrrolidinone}. Giant foxtail (Setaria faberiHerrm. # SETFA) control was reduced as much as 25% by 90 days after planting when fluorochloridone was applied early preplant rather than preemergence. Fluorochloridone at 0.8 kg/ha applied preplant or preemergence gave 83% or greater control of common lambsquarters and giant foxtail for the entire growing season. However, velvetleaf control with the same treatments was 61% or less. Fluorochloridone caused minimal corn injury. Greenhouse bioassay indicated that fluorochloridone may carry over and injure soybean[Glycine max(L.) Merr.] the year after application. Imbibition of fluorochloridone by seed of corn and giant foxtail did not reduce germination at concentrations up to 10-3M. Giant foxtail seedling fresh weight was reduced 80% following imbibition of 10-5M fluorochloridone. Corn seedling fresh weight was not reduced by imbibition of up to 10-4M fluorochloridone.


1998 ◽  
Vol 12 (4) ◽  
pp. 631-637 ◽  
Author(s):  
Corey V. Ransom ◽  
James J. Kells

Field studies were conducted from 1994 to 1996 in Michigan to evaluate postemergence (POST) herbicides for hemp dogbane control in corn. Studies were initiated at no-tillage and chisel-plowed sites each of the three years. Nicosulfuron and primisulfuron were evaluated alone and in combination with 2,4-D amine or dicamba. In 1995 and 1996, CGA-152005 plus primisulfuron was also applied alone and in combination with 2,4-D or dicamba. Control varied among years and sites. Nicosulfuron, primisulfuron, and CGA-152005 plus primisulfuron applied alone controlled 30% of the hemp dogbane, and dicamba or 2,4-D alone controlled 42 and 66%, respectively. Tank mixtures of nicosulfuron, primisulfuron, or CGA-152005 plus primisulfuron with dicamba were more effective and more consistent than dicamba alone. Combinations of nicosulfuron, primisulfuron, or CGA-152005 plus primisulfuron with 2,4-D gave the most effective and consistent control across sites, with an average of 93% control. In general, treatments controlled only shoots that had emerged at the time of application. New shoots emerged following herbicide application at the chisel-tillage sites in 1994 and 1995 but not at the no-tillage sites. However, in 1996, shoot emergence following treatment occurred in both no-tillage and chisel-tillage sites.


Sign in / Sign up

Export Citation Format

Share Document