application timing
Recently Published Documents


TOTAL DOCUMENTS

683
(FIVE YEARS 123)

H-INDEX

30
(FIVE YEARS 4)

2021 ◽  
Vol 16 (4) ◽  
pp. 353-361
Author(s):  
Denis I. Parpura ◽  
Anton I. Sidortsov ◽  
Gaik P. Atmachyan

Rust is one of the most economically important foliar diseases of sunflower. The problem of sunflower disease control was considered. The article presents the results of a two-year experiment studying the efficiency of AMISTAR Gold fungicide, concentrated suspension (active ingredient: Azoxystrobin 125 g/L, Difenoconazole 125 g/L) in sunflower hybrids in the Lower Volga region. Flowerbud development stage was the best application timing for increasing productivity. Therefore, sunflower yield averaged 34 c/ha. The biological efficiency of the fungicide ranged from 85 to 90 %. The calculation of economic efficiency showed 145255 % profitability depending on the year.


Author(s):  
Nathan Kleczewski ◽  
Andrew Kness ◽  
Alyssa Koehler

Double cropped soybeans are planted on approximately 1/3 of crop acres in the Chesapeake Bay region of the United States. Producers have asked if foliar fungicides are required to optimize yields in this region. We assessed the impacts of foliar fungicide application timing and row spacing on foliar disease, greenstem, and yield from 11 site years spanning 2017-2019. Foliar diseases only developed at rateable levels in one location. Fungicide application, regardless of timing, increased percent greenstem over non-treated controls. Fungicide application did not impact soybean yield. Yield was greater in 38.1 cm rows when compared to 19 cm rows. Our data do not support the use of foliar fungicides in double cropped soybean production in this region.


Plant Disease ◽  
2021 ◽  
Author(s):  
Briana Claassen ◽  
Sierra N Wolfenbarger ◽  
David H. Gent

Understanding of the physical mode of action of fungicides allows for more efficient and effective application of fungicides and can improve disease control. Greenhouse and field studies were conducted to explore the pre-and post-infection duration and translocative properties of fungicides commonly used to control hop powdery mildew, caused by Podosphaera macularis. In greenhouse studies, application made 24 h before inoculation were almost 100% effective at suppressing powdery mildew, regardless of the fungicide evaluated. However, percent control of powdery mildew based on the number of pathogen colonies per leaf varied significantly between fungicides with increasing time from inoculation to application, ranging from 50 to 100% disease control (SE 0.168 and 0, respectively) depending on the fungicide. Fluopyram or fluopyram + trifloxystrobin were particularly efficacious, suppressing nearly all powdery mildew development independent of application timing. In translocation studies, fluopyram and flutriafol were the most effective treatments in each of two separate experiments, resulting in zones of inhibition of 1036 and 246.3 mm2, respectively, on adaxial leaf surfaces when a single droplet of each fungicide was applied to the abaxial surface of leaves. In field experiments, all fungicide treatments provided nearly complete control of powdery mildew infection when applied prior to inoculation. Levels of disease control decreased with time depending on treatment, showing trends similar to those observed in greenhouse studies. In the 2017 field experiments high levels of disease control (>75%) were observed at post-inoculation timepoints for all treatments tested, whereas the same fungicides were more sensitive to application timing in a different year. Findings from this research indicate that differences in efficacy between fungicides are relatively small when applications are made preventatively, but post-infection activity and translaminar movement of certain fungicides may render some more effective depending on application coverage and pre-existing infection.


2021 ◽  
Vol 2107 (1) ◽  
pp. 012048
Author(s):  
W M Nooriman ◽  
A H Abdullah ◽  
N Abdul Rahim ◽  
Erdy Sulino Mohd Muslim Tan

Abstract Harumanis is a famous green eating mango cultivar that has been commercially cultivated in Malaysia’s state of Perlis. A variety of nutrients are found in soil, all of which are necessary for plant growth. Micronutrients such as Nitrogen (N), Phosphorus (P), and Potassium (K) are essential for Harumanis mango (Mangifera Indica) to growth. The importance of soil fertility in achieving high plant productivity and quality cannot be overstated. It should be used in a moderate amount and in a balanced manner. Predicting appropriate nutrients and the right timing to satisfy the tree’s demands is critical. The aim of this study is to create for Harumanis mango a fuzzy logic-based system to analyse the results of soil tests for nitrogen (N), phosphorus (P), and potassium (K) in the Harumanis mango orchard. The interpreted data are used to estimate N-P-K nutrient levels and indicate the optimal fertilizer solution and application timing for each Harumanis growth stages. The system utilizes Fuzzy Logic Control (FLC) to predict the nutrients demand for Harumanis mango growth. Results shows the system able to calculate and predict values of required N-P-K fertilizer for optimal growth. Thus, assist farmers in predicting the proper amount of N-P-K to apply to Harumanis mango soil.


Soil Systems ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 67
Author(s):  
Ammar B. Bhandari ◽  
Ronald Gelderman ◽  
David German ◽  
Dennis Todey

Winter manure application contributes substantial nutrient loss during snowmelt and influences water quality. The goal of this study is to develop best management practices (BMPs) for winter manure management. We compared nutrient concentrations in snowmelt runoff from three dates of feedlot solid beef manure application (November, January, and March) at 18 tons ha−1 on untilled and fall-tilled plots. The manure was applied at a single rate. Sixteen 4 m2 steel frames were installed in the fall to define individual plots. Treatments were randomly assigned so that each tillage area had two control plots, two that received manure during November, two in January, and two in March. Snowmelt runoff from each individual plot was collected in March and analyzed for runoff volume (RO), ammonium-nitrogen (NH4-N), nitrate-nitrogen (NO3-N), total suspended solids (TSS), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and total dissolved phosphorus (TDP). Snowmelt runoff concentrations and loads of NH4-N, TKN, TP, and TDP were significantly higher in runoff from manure application treatments compared to control. The concentration of NH4-N and loads of NH4-N and TDP were significantly (p = 0.05) greater (42%, 51%, and 47%, respectively) from untilled compared to fall-tilled plots. The November application significantly increased RO, NH4-N, and TDP concentrations and loads in the snowmelt runoff compared to January and March applications. Results showed that nutrient losses in snowmelt runoff were reduced from manure applications on snow compared to non-snow applications. The fall tillage before winter manure application decreased nutrient losses compared to untilled fields.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0259550
Author(s):  
Muhammad Arif ◽  
Sagheer Atta ◽  
Muhammad Amjad Bashir ◽  
Muhammad Ifnan Khan ◽  
Ansar Hussain ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1968
Author(s):  
Ibukun T. Ayankojo ◽  
Kelly T. Morgan

Soil nutrients and water management practices according to the concept of 4R nutrient stewardship (right rate, right timing, right placement, and right source) can have significant benefits on crop productivity and reduce the negative effects of agricultural practices on the environment. Therefore, this present study evaluated the effects of nitrogen (N) application timing under different irrigation regimes on open-field, fresh-market tomato production in Florida. In this study, 2 N application timings applied at 25% pre-plant with 75% fertigation (BM), and 0 pre-plant with 100% fertigation (NB), were evaluated. The two N application methods were evaluates using three irrigation regimes: full irrigation (FI, 100% ETc), deficit irrigation (DI, 66% ETc), and regulated deficit irrigation (RDI, 66% ETc during the first 4 weeks after transplanting and 100% ETc afterward). The results showed that BM treatment significantly improved early-season tomato growth compared to NB treatment. The results also indicated that under RDI and DI irrigation conditions, tomato root length was lowest (average value of 13%) within the first 15 cm compared to 40% within 15–30 cm and 47% at 30–40 cm soil depths. Similar to plant growth, BM treatment significantly increased tomato yield (average valued 56.00 Mg ha−1) compared to the NB (average value 40.23 Mg ha−1). The application of DI throughout the growing season reduced tomato yield; however, there were no differences in yield under the RDI and FI irrigation regimes. Therefore, based on the results from this study, it can be concluded that, under Florida growing conditions, pre-plant N application is essential for tomato growth and productivity. Additionally, irrigation application using the RDI method could be successfully adopted in Florida tomato production for improved water savings without any negative effects on tomato growth and productivity.


Sign in / Sign up

Export Citation Format

Share Document