Reducing Velvetleaf (Abutilon theophrasti) and Giant Foxtail (Setaria faberi) Seed Production with Simulated-Roller Herbicide Applications

Weed Science ◽  
1986 ◽  
Vol 34 (2) ◽  
pp. 256-259 ◽  
Author(s):  
Barbara M. Biniak ◽  
Richard J. Aldrich

The potential of preventing seed production and reducing seed viability of weeds that commonly grow taller than soybeans [Glycine max(L.) Merr. ‘Williams 82’] was evaluated. Chlorflurenol (2-chloro-9-hydroxy-9H-fluorene-9-carboxylic acid), chlorsulfuron {2-chloro-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino] carbonyl] benzenesulfonamide}, and glyphosate [N-(phosphonomethyl)glycine] were evaluated against sparse stands of velvetleaf (Abutilon theophrastiMedik. # ABUTH) and giant foxtail (Setaria faberiHerrm. # SETFA) growing in soybeans. Simulated-roller applications of all three herbicides significantly reduced seed production and germination of both weeds, although glyphosate was more effective than were the other two. Applications during early flowering of velvetleaf and early heading of giant foxtail reduced seed production more than later applications when some seeds were present. With the early application of glyphosate, 99% prevention of velvetleaf and 96% prevention of giant foxtail seed production were attained. With the early glyphosate application, germination of seeds produced was reduced by 50% in velvetleaf and by 95% in giant foxtail. Soybean yields were not reduced by either glyphosate or chlorflurenol but were drastically reduced by chlorsulfuron.

Weed Science ◽  
1986 ◽  
Vol 34 (3) ◽  
pp. 462-466 ◽  
Author(s):  
S. Kent Harrison ◽  
Loyd M. Wax ◽  
Loren E. Bode

Experiments were conducted at Urbana, IL, in 1983 and 1984 to determine the effect of adjuvants, adjuvant rate, and carrier volume on postemergence weed control with bentazon [3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide] and sethoxydim {2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one} in soybeans [Glycine max(L.) Merr. ‘Williams’]. Little difference was observed between a petroleum oil:emulsifier blend (83:17, v/v) (POC) and a soybean oil: emulsifier blend (85:15, v/v) (SBOC) in enhancing control of velvetleaf (Abutilon theophrastiMedik. # ABUTH) with 0.6 or 1.1 kg ai/ha bentazon. Application of bentazon in a carrier volume of 94 L/ha provided velvetleaf control equivalent to that applied in 187 L/ha. Increasing the adjuvant rate from 2.3 to 11.7 L/ha increased visible soybean injury but had no effect on velvetleaf control with bentazon. Control of giant foxtail (Setaria faberiHerrm. # SETFA) with 0.1 kg ai/ha sethoxydim was enhanced more by POC than by SBOC. Phytotoxicity of sethoxydim was not altered by changes in carrier volume or adjuvant rate under conditions of adequate soil moisture in 1983. Under limiting soil moisture in 1984, giant foxtail control with sethoxydim increased slightly when the adjuvant rate was increased from 4.6 to 11.7 L/ha, and carrier volume was increased from 47 to 187 L/ha.


Weed Science ◽  
1973 ◽  
Vol 21 (6) ◽  
pp. 517-520 ◽  
Author(s):  
R. G. Harvey

The relative phytotoxicities of 12 substituted dinitroaniline herbicides to soybeans [Glycine max(L.) Merr ‘Corsoy’], velvetleaf (Abutilon theophrastiMedic.), and either giant foxtail (Setaria faberiHerrm.) or foxtail millet [Setaria italica(L.) Beauv.] were compared under greenhouse and laboratory conditions. In these studies, dinitramine (N4,N4-diethyl-α,α,α-trifluoro-3,5-dinitrotoluene-2,4-diamine) was most toxic to each species. Dinitramine, trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine), and BAS-3921 H [N-propyl-N-(2-chloroethyl)-α,α,α-trifluoro-2,6-dinitro-p-toluidine] were most inhibitory of soybean shoot growth, while oryzalin (3,5-dinitro-N4,N4-dipropyl-sulfanilamide), dinitramine, and BAS-3921 H were most inhibitory of root growth. Similarly, dinitramine, oryzalin, nitralin [4-(methylsulfonyl)-2,6-dinitro-N,N-dipropylaniline], and BAS-3921 H inhibited velvetleaf shoot growth; and oryzalin, dinitramine, chlornidine [2,6-dinitro-N,N-di(2-dichloroethyl)-p-toluidine], nitralin, and GS-39985 (N-n-propyl-N-tetrahydrofurfuryl-4-trifluoromethyl-2,6-dinitroaniline) reduced root growth. All of the herbicides except oryzalin and nitralin inhibited foxtail millet shoot growth, while all of the herbicides reduced root growth.


Weed Science ◽  
1973 ◽  
Vol 21 (6) ◽  
pp. 512-516 ◽  
Author(s):  
R. G. Harvey

The effects of twelve substituted dinitroaniline herbicides on soybeans [Glycine max(L.) Merr., ‘Corsoy’], velvetleaf (Abutilon theophrastiMedic.), and giant foxtail (Setaria faberiHerrm.) were evaluated under field conditions in 1971 and 1972; and the relative persistence of herbicide residues in soil was determined by field bioassay. Of the herbicides tested, dinitramine (N4,N4-diethyl-α,α,α-trifluoro-3,5-dinitrotoluene-2,4-diamine), trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine), and benefin (N-butyl-N-ethyl-α,α,α-trifluoro-2, 6-dinitro-p-toluidine) reduced soybean stands in 1971. Only dinitramine reduced soybean stands in 1972 when applied in low rates, but all of the herbicides except CGA-10832 (N,N-propyl-N-cyclopropylmethyl-4-trifluoromethyl-2,6-dinitroaniline) and chlornidine [N,N(2-chloroethyl)-2,6-dinitro-4-methylaniline] reduced soybean stands at high rates. Overall, oryzalin (3,5-dinitro-N4,N4-dipropylsulfanilamide), dinitramine, and BAS-3921 H[N-propyl-N-(2-chloroethyl)-2,6-dinitro-4-trifluoromethylaniline] provided the best velvetleaf control; while trifluralin, benefin, CGA-10832, and BAS-3921 H produced the most satisfactory giant foxtail control. In 1972, residues of seven of the herbicides caused injury to oats planted over the plot area 355 days after the original herbicide application. The greatest oat injury was caused by trifluralin and oryzalin. Oats were not injured, however, from dinitramine residues when planted only 75 days after the herbicide application.


Weed Science ◽  
1996 ◽  
Vol 44 (4) ◽  
pp. 939-943 ◽  
Author(s):  
Ribas A. Vidal ◽  
Thomas T. Bauman

Experiments were conducted from 1992 through 1994 to determine the effect of 0 to 12 Mg ha−1of surface wheat residues (SWR) on giant foxtail density and crown node length, and soybean yield. Giant foxtail density decreased as SWR increased from 0 to 12 Mg ha−1. SWR of 6 to 12 Mg ha−1reduced giant foxtail density by 2 to 50 % compared to bare soil. The crown node of giant foxtail was 2 cm above the soil surface with 12 Mg ha−1of SWR. Frost in 1992 injured soybean more than weeds in plots with SWR while soybean in soil with no SWR was not injured. In absence of frost in 1993 and 1994, yield of weedy soybean increased 20 to 29%, respectively, with the increase of SWR from 0 to 6 Mg ha−1. In weed-free plots, soybean yield was similar across all SWR levels. These results confirm the hypothesis that high levels of SWR increased soybean yield in weedy plots because of decreased giant foxtail infestation.


1967 ◽  
Vol 7 (24) ◽  
pp. 25 ◽  
Author(s):  
GB Taylor ◽  
RC Rossiter

Seed production and persistence of the Carnamah, Northam A, Dwalganup, and Geraldton strains of subterranean clover (Trifolium subterraneum L.) were examined in undefoliated swards in the wheatbelt of Western Australia. The early flowering characteristic of Carnamah was not always associated with higher seed yields. Only when there was a well-defined, early finish to the growing season, or when flowering was very much earlier in Carnamah (viz., following an early 'break' to the season), did this strain clearly outyield both Northam A and Geraldton. The seed yield of Dwalganup was generally inferior to that of the other strains. Factors affecting regeneration are discussed. Under low rainfall conditions, poorer germination-regulation of Carnamah, compared with Geraldton and Northam A, would be expected to result in poorer persistence unless offset by higher seed yields in the Carnamah strain.


Weed Science ◽  
1999 ◽  
Vol 47 (5) ◽  
pp. 563-570 ◽  
Author(s):  
Lizabeth A. B. Stahl ◽  
Gregg A. Johnson ◽  
Ronald L. Wyse ◽  
Douglas D. Buhler ◽  
Jeffrey L. Gunsolus

Weed management can be a significant challenge in cropping systems, partly because the effects of tillage systems on weed seedbank and seedling population dynamics are not well understood. Field research was conducted from 1994 to 1996 in established tillage plots consisting of moldboard plow (MP), chisel plow (CP), and no-tillage (NT). The objectives were to determine the effects of long-term tillage systems on the timing and duration ofSetariaspp. emergence and percentage cumulative emergence from the soil seedbank and to investigate the effect of tillage onSetariaspp. density and seed production following glyphosate application atSetariaspp. heights of 5, 10, and 15 cm. NT contained a greater number ofSetariaspp. seed in the 0- to 1-, 1- to 3-, and 3- to 6-cm depths than MP or CP systems. There was little difference between the three tillage systems at depths greater than 6 cm.Setariaspp. emergence was greater in NT than in MP or CP in 1994 and 1996 and greater than in MP in 1995. There was a substantial increase inSetariaspp. emergence in NT between 3 and 4 weeks after planting (WAP) in 1994 and between 5 and 6 WAP in 1995 and 1996. Significant emergence did not occur past 5 to 6 WAP in 1994 and 1995 but continued over a longer period of time in 1996.Setariaspp. plants consistently reached targeted herbicide application heights 4 to 9 d earlier in NT than in CP and MP. In 1994, finalSetariaspp. density was greater in NT compared to CP and MP at the 5- and 10-cm herbicide application timings. When glyphosate was applied to 15-cm-tallSetaria, very few weeds were present following application across all tillage systems. In 1995, NT resulted in greaterSetariaspp. density than MP or CP across all application timings. There was no difference in finalSetariaspp. density between MP and CP across all glyphosate timings in 1994 and 1995. Seed production was negligible in MP and CP, regardless of glyphosate timing. In NT, however, significant seed production occurred, especially with early application. Results indicate that the effectiveness of nonresidual herbicides forSetaria faberiHerrm. control is influenced by tillage system and the timing of application.


Weed Science ◽  
1998 ◽  
Vol 46 (5) ◽  
pp. 545-548 ◽  
Author(s):  
Edward C. Luschei ◽  
Douglas D. Buhler ◽  
Jack H. Dekker

Changes in weed seedbank composition are often monitored by removing seeds from soil samples. One extraction method accomplishes this by creating a slurry of soil and a concentrated inorganic salt solution. Centrifugation is then used to separate constituents of differing densities. We have found that centrifugation of giant foxtail seeds in 3.2 M potassium carbonate solution as conducted in a centrifugation/flotation extraction method can reduce viability as measured by germination and tetrazolium tests. In one experiment, centrifugation/flotation separation reduced germination of giant foxtail seeds from 94 to 52%. The likely cause of seed damage was the high pH of the potassium carbonate solution in conjunction with the increased hydrostatic pressure due to centrifugation. While centrifugation affected quantitative measures of seed viability, it did not alter qualitative viability estimates using a pressure test.


Weed Science ◽  
1985 ◽  
Vol 33 (4) ◽  
pp. 469-471 ◽  
Author(s):  
Dale L. Shaner ◽  
Patricia A. Robson

The herbicide AC 252 214 {2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl] 3-quinoline-carboxylic acid} was absorbed by the roots and foliage of soybean [Glycine max (L.) Merr. ‘Williams’], common cocklebur (Xanthium strumarium L. ♯ XANST), and velvetleaf (Abutilon theophrasti Medic. ♯ ABUTH), and then translocated in the xylem and phloem to meristematic regions. AC 252 214 was metabolized rapidly by soybean and velvetleaf but appeared to be metabolized slowly by cocklebur. The order of tolerance of these three species to AC 252 214 was soybeans > velvetleaf > cocklebur. This order of tolerance was directly correlated in young plants with the half-life of AC 252 214 within the tissue. Velvetleaf exhibited increased tolerance to AC 252 214 with age, which was attributed partially to greatly reduced absorption of the herbicide by older leaves and more rapid metabolism of the herbicide.


Weed Science ◽  
1979 ◽  
Vol 27 (5) ◽  
pp. 520-526 ◽  
Author(s):  
George Kapusta

Twenty herbicide treatments were evaluated on conventional-till (plow, disc, and harrow), minimum-till (disc only), and no-till planted soybeans [Glycine max(L.) Merr.] from 1976 through 1978 at the Belleville Research Center in St. Clair County, Illinois. The soil type was a Weir silt loam (Typic Ochraqualf) characterized by poor internal drainage and 1.2% organic matter. Weed population by species, weed control, and soybean population, injury, and yield were obtained. Fall panicum (Panicum dichotomiflorumMichx.) and giant foxtail (Setaria faberiHerrm.) were the dominant species in all tillage systems, exceeding 1 million plants/ha in the conventional and no-till plots. These species and ivyleaf morningglory [Ipomoea hederacea(L.) Jacq.] were the most difficult to control each year. Weed control was the poorest in the no-till plots because of the large size of the weeds at the time of herbicide application, insufficient rainfall following, and because the plots were not cultivated. The soybean population was equal in all tillage systems except in 1976 when the no-till population exceeded that in the other tillage systems. Treatments that included oryzalin (3,5-dinitro-N4,N4-dipropylsulfanilamide) caused 42 and 35% soybean injury in the 1976 minimum and no-till plots, respectively. Postemergence-applied naptalam (N-1-naphthylphthalamic acid) plus dinoseb (2-sec-butyl-4,6-dinitrophenol) caused leaf burn each year that ranged from 5 to 35% but all plants recovered within several weeks of application. The seedbed tillage method and herbicide treatments did not significantly affect soybean yields in 1976 when all the herbicides were effective. No-till yields in 1977 and 1978 were substantially lower than yields in conventional and minimum-till plots because of poor weed control. Soybean yields were 2506, 2466, and 1714 kg/ha in the conventional-till, minimum-till, and no-till plots, respectively, when averaged over the 3 yr and 20 herbicide treatments.


Sign in / Sign up

Export Citation Format

Share Document