Effect of tillage on timing ofSetariaspp. emergence and growth

Weed Science ◽  
1999 ◽  
Vol 47 (5) ◽  
pp. 563-570 ◽  
Author(s):  
Lizabeth A. B. Stahl ◽  
Gregg A. Johnson ◽  
Ronald L. Wyse ◽  
Douglas D. Buhler ◽  
Jeffrey L. Gunsolus

Weed management can be a significant challenge in cropping systems, partly because the effects of tillage systems on weed seedbank and seedling population dynamics are not well understood. Field research was conducted from 1994 to 1996 in established tillage plots consisting of moldboard plow (MP), chisel plow (CP), and no-tillage (NT). The objectives were to determine the effects of long-term tillage systems on the timing and duration ofSetariaspp. emergence and percentage cumulative emergence from the soil seedbank and to investigate the effect of tillage onSetariaspp. density and seed production following glyphosate application atSetariaspp. heights of 5, 10, and 15 cm. NT contained a greater number ofSetariaspp. seed in the 0- to 1-, 1- to 3-, and 3- to 6-cm depths than MP or CP systems. There was little difference between the three tillage systems at depths greater than 6 cm.Setariaspp. emergence was greater in NT than in MP or CP in 1994 and 1996 and greater than in MP in 1995. There was a substantial increase inSetariaspp. emergence in NT between 3 and 4 weeks after planting (WAP) in 1994 and between 5 and 6 WAP in 1995 and 1996. Significant emergence did not occur past 5 to 6 WAP in 1994 and 1995 but continued over a longer period of time in 1996.Setariaspp. plants consistently reached targeted herbicide application heights 4 to 9 d earlier in NT than in CP and MP. In 1994, finalSetariaspp. density was greater in NT compared to CP and MP at the 5- and 10-cm herbicide application timings. When glyphosate was applied to 15-cm-tallSetaria, very few weeds were present following application across all tillage systems. In 1995, NT resulted in greaterSetariaspp. density than MP or CP across all application timings. There was no difference in finalSetariaspp. density between MP and CP across all glyphosate timings in 1994 and 1995. Seed production was negligible in MP and CP, regardless of glyphosate timing. In NT, however, significant seed production occurred, especially with early application. Results indicate that the effectiveness of nonresidual herbicides forSetaria faberiHerrm. control is influenced by tillage system and the timing of application.

Weed Science ◽  
2019 ◽  
Vol 67 (1) ◽  
pp. 126-135 ◽  
Author(s):  
Nicholas E. Korres ◽  
Jason K. Norsworthy ◽  
Andy Mauromoustakos

AbstractInformation about weed biology and weed population dynamics is critical for the development of efficient weed management programs. A field experiment was conducted in Fayetteville, AR, during 2014 and 2015 to examine the effects of Palmer amaranth (Amaranthus palmeriS. Watson) establishment time in relation to soybean [Glycine max(L.) Merr.] emergence and the effects ofA. palmeridistance from the soybean row on the weed’s height, biomass, seed production, and flowering time and on soybean yield. The establishment time factor, in weeks after crop emergence (WAE), was composed of six treatment levels (0, 1, 2, 4, 6, and 8 WAE), whereas the distance from the crop consisted of three treatment levels (0, 24, and 48 cm). Differences inA. palmeribiomass and seed production averaged across distance from the crop were found at 0 and 1 WAE in both years. Establishment time had a significant effect onA. palmeriseed production through greater biomass production and height increases at earlier dates.Amaranthus palmerithat was established with the crop (0 WAE) overtopped soybean at about 7 and 10 WAE in 2014 and 2015, respectively. Distance from the crop affectedA. palmeriheight, biomass, and seed production. The greater the distance from the crop, the higherA. palmeriheight, biomass, and seed production at 0 and 1 WAE compared with other dates (i.e., 2, 4, 6, and 8 WAE).Amaranthus palmeriestablishment time had a significant impact on soybean yield, but distance from the crop did not. The earlierA. palmeriinterfered with soybean (0 and 1 WAE), the greater the crop yield reduction; after that period no significant yield reductions were recorded compared with the rest of the weed establishment times. Knowledge ofA. palmeriresponse, especially at early stages of its life cycle, is important for designing efficient weed management strategies and cropping systems that can enhance crop competitiveness. Control ofA. palmeriwithin the first week after crop emergence or reduced distance between crop and weed are important factors for an effective implementation of weed management measures againstA. palmeriand reduced soybean yield losses due to weed interference.


2015 ◽  
Vol 29 (3) ◽  
pp. 405-411 ◽  
Author(s):  
Whitney D. Crow ◽  
Lawrence E. Steckel ◽  
Robert M. Hayes ◽  
Thomas C. Mueller

Recent increases in the prevalence of glyphosate-resistant (GR) Palmer amaranth mandate that new control strategies be developed to optimize weed control and crop performance. A field study was conducted in 2012 and 2013 in Jackson, TN, and in 2013 in Knoxville, TN, to evaluate POST weed management programs applied after harvest (POST-harvest) for prevention of seed production from GR Palmer amaranth and to evaluate herbicide carryover to winter wheat. Treatments were applied POST-harvest to corn stubble, with three applications followed by a PRE herbicide applied at wheat planting. Paraquat alone or mixed withS-metolachlor controlled 91% of existing Palmer amaranth 14 d after treatment but did not control regrowth. Paraquat tank-mixed with a residual herbicide of metribuzin, pyroxasulfone, saflufenacil, flumioxazin, pyroxasulfone plus flumioxazin, or pyroxasulfone plus fluthiacet improved control of regrowth or new emergence compared with paraquat alone. All residual herbicide treatments provided similar GR Palmer amaranth control. Through implementation of POST-harvest herbicide applications, the addition of 1,200 seed m−2or approximately 12 million seed ha−1to the soil seedbank was prevented. Overall, the addition of a residual herbicide provided only 4 to 7% more GR Palmer amaranth control than paraquat alone. Wheat injury was evident (< 10%) in 2012 from the PRE applications, but not in 2013. Wheat grain yield was not adversely affected by any herbicide application.


2011 ◽  
Vol 48 (2) ◽  
pp. 159-175 ◽  
Author(s):  
J. KIHARA ◽  
A. BATIONO ◽  
B. WASWA ◽  
J. M. KIMETU ◽  
B. VANLAUWE ◽  
...  

SUMMARYReduced tillage is said to be one of the potential ways to reverse land degradation and ultimately increase the productivity of degrading soils of Africa. We hypothesised that crop yield following a modest application of 2 t ha−1 of crop residue in a reduced tillage system is similar to the yield obtained from a conventional tillage system, and that incorporation of legumes in a cropping system leads to greater economic benefits as opposed to a cropping system involving continuous maize. Three cropping systems (continuous maize monocropping, legume/maize intercropping and rotation) under different tillage and residue management systems were tested in sub-humid western Kenya over 10 seasons. While soybean performed equally well in both tillage systems throughout, maize yield was lower in reduced than conventional tillage during the first five seasons but no significant differences were observed after season 6. Likewise, with crop residue application, yields in conventional and reduced tillage systems are comparable after season 6. Nitrogen and phosphorus increased yield by up to 100% compared with control. Gross margins were not significantly different among the cropping systems being only 6 to 39% more in the legume–cereal systems relative to similar treatments in continuous cereal monocropping system. After 10 seasons of reduced tillage production, the economic benefits for our cropping systems are still not attractive for a switch from the conventional to reduced tillage.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247137
Author(s):  
Muhammad Shahzad ◽  
Khawar Jabran ◽  
Mubshar Hussain ◽  
Muhammad Aown Sammar Raza ◽  
Leonard Wijaya ◽  
...  

The world population will rise in future, which would demand more wheat production to fulfil dietary needs of wheat-dependent population of the world. Food security in wheat-dependent regions will greatly rely on wheat productivity. Weed infestation is a major constraint reducing wheat productivity globally. Nonetheless, cropping systems and weed management strategies strongly influence weed infestation in modern agriculture. Herbicides are the key weed management tool in conventional agriculture. However, frequent use of herbicides have resulted in the evolution of herbicide-resistance weeds, which made weed management a challenging task. Sustainable and eco-friendly weed management strategies shift weed-crop competition in the favour of crop plants. Limited studies have evaluated the interactive effect of cropping systems and weed management strategies on weed flora of wheat-based cropping systems (WBCSs). This two-year study evaluated the impact of different weed management strategies (WMSs) on weed flora of WBCSs, i.e., fallow-wheat (FW), rice-wheat (RW), cotton-wheat (CW), mungbean-wheat (MW) and sorghum-wheat (SW). The WMSs included in the study were, false seedbed, allelopathic water extracts and herbicide application, while weed-free and weedy-check were maintained as control treatments. Data relating to diversity and density of individual and total broadleaved and narrow-leaved weeds were recorded. The WBCSs, WMSs and their interaction significantly altered diversity and density of individual, total, broadleaved and narrow-leaved weeds. Weed-free and weedy-check treatments recorded the lowest and the highest values of diversity and density of individual, total, broadleaved and narrow-leaved weeds. Herbicide application effectively reduced density and diversity of weeds. Allelopathic water extracts and false seedbed proved less effective than herbicides. On the other hand, SW cropping system not only reduced weed density but also limited the weed flora. It is concluded that false seedbed and SW cropping system can be efficiently used to manage weeds in WBCSs. However, long-term studies are needed to infer the impact of SW cropping system and false seedbed on soil properties, soil microbes and productivity of wheat crop.


1996 ◽  
Vol 76 (4) ◽  
pp. 795-797 ◽  
Author(s):  
Jianhua Zhang ◽  
Allan S. Hamill ◽  
Susan E. Weaver

In this study, corn yield was measured after 10 yr of various rotational sequences of corn, soybeans, and wheat or oats, and under three levels of weed management to determine the effects of land use history on crop yield. Corn yield varied significantly with both crop rotation and weed management. Com yields were lower after continuous corn or soybeans or immediately following corn, and higher after a cereal crop or a rotation including a cereal. Herbicide application alone maintained significantly higher corn yield than inter-row cultivation across cropping systems. Key words: Corn yield, crop rotation, Zea mays


2011 ◽  
Vol 27 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Kathleen Delate ◽  
Daniel Cwach ◽  
Craig Chase

AbstractNovel technologies to reduce tillage in organic systems include a no-tillage roller/crimper for terminating cover crops prior to commercial crop planting. The objective of this experiment was to compare: (1) weed management and yield effects of organic tilled and no-tillage systems for corn (Zea maysL.), soybean [Glycine max(L.) Merr.] and irrigated tomato (Lycopersicon esculentumMill.), using a roller/crimper and two cover crop combinations [hairy vetch/rye (Vicia villosaRoth/Secale cerealeL.) and winter wheat/Austrian winter pea (Triticum vulgareL./Pisum sativumL. ssp.arvense(L.) Poir.)]; and (2) the economic performance of each system. Weed management ranged from fair to excellent in the organic no-tillage system for soybean and tomato crops, with the rye/hairy vetch mulch generally providing the most weed suppression. Corn suffered from low rainfall, competition from weeds and hairy vetch re-growth and, potentially, low soil nitrogen (N) from lack of supplemental fertilization and N immobilization during cover crop decomposition. No-tillage corn yields averaged 5618 and 634 kg ha−1in 2006 and 2007, respectively, which was 42–92% lower than tilled corn. No-tillage soybeans in 2007 averaged 2793 kg ha−1compared to 3170 kg ha−1for tilled soybeans, although no-tillage yields were 48% of tilled yields in the dry year of 2006. Irrigated tomato yields averaged 40 t ha−1in 2006 and 63 t ha−1in 2007, with no statistical differences among tillage treatments. Economic analysis for the three crops revealed additional cover crop seed and management costs in the no-tillage system. Average organic corn returns to management were US$1028 and US$2466 ha−1greater in the tilled system compared to the no-tillage system in 2006 and 2007, respectively, which resulted mainly from the dramatically lower no-tillage yields. No-tillage soybean returns to management were negative in 2006, averaging US$ −14 ha−1, compared to US$742 ha−1for tilled soybeans. However, in 2007, no-tillage soybean returns averaged US$1096 ha−1. The 2007 no-tillage irrigated tomato returns to management averaged US$53,515 compared to US$55,515 in the tilled system. Overall, the organic no-tillage soybean and irrigated tomato system demonstrated some promise for reducing tillage in organic systems, but until economic benefits from soil carbon enhancement can be included for no-tillage systems, soil improvements probably cannot offset the economic losses in no-tillage systems. Irrigation could improve the performance of the no-tillage system in dry years, especially if grain crops are rotated with a high-value irrigated tomato crop.


2013 ◽  
Vol 27 (1) ◽  
pp. 231-240 ◽  
Author(s):  
Bo Melander ◽  
Nicolas Munier-Jolain ◽  
Raphaël Charles ◽  
Judith Wirth ◽  
Jürgen Schwarz ◽  
...  

Noninversion tillage with tine- or disc-based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape, and maize in Europe. However, new regulations on pesticide use might hinder further expansion of reduced-tillage systems. European agriculture is asked to become less dependent on pesticides and promote crop protection programs based on integrated pest management (IPM) principles. Conventional noninversion tillage systems rely entirely on the availability of glyphosate products, and herbicide consumption is mostly higher compared to plow-based cropping systems. Annual grass weeds and catchweed bedstraw often constitute the principal weed problems in noninversion tillage systems, and crop rotations concurrently have very high proportions of winter cereals. There is a need to redesign cropping systems to allow for more diversification of the crop rotations to combat these weed problems with less herbicide input. Cover crops, stubble management strategies, and tactics that strengthen crop growth relative to weed growth are also seen as important components in future IPM systems, but their impact in noninversion tillage systems needs validation. Direct mechanical weed control methods based on rotating weeding devices such as rotary hoes could become useful in reduced-tillage systems where more crop residues and less workable soils are more prevalent, but further development is needed for effective application. Owing to the frequent use of glyphosate in reduced-tillage systems, perennial weeds are not particularly problematic. However, results from organic cropping systems clearly reveal that desisting from glyphosate use inevitably leads to more problems with perennials, which need to be addressed in future research.


2021 ◽  
Vol 50 (6) ◽  
pp. 1543-1562
Author(s):  
Rafi Qamar ◽  
Atique ur Rehman ◽  
Hafiz Muhammad Rashad Javeed ◽  
Abdul Rehman Abdul Rehman ◽  
Muhammad Ehsan Safdar ◽  
...  

Rice-wheat production is an essential component of cropping systems in the Indus-Ganga Plains (IGP) which play a pivotal role in food security of south Asia. These crops are being cultivated on an area of about 13.5 M ha of South Asia. In rice-wheat cropping system, the major reason for lower wheat grain yield is use of unwise tillage practices during wheat seedbed preparation, cultivation of late maturing rice varieties, water shortage, labor shortage, high cost of fertilizers and poor crop management practices. Resource-conserving technology improves the sustainability and productivity of wheat, which ultimately increase the farmer’s livelihood and reduce poverty. Tillage plays an important role in agricultural operation for soil manipulation to optimize the crop productivity. Different tillage systems are being practiced for wheat production in rice-wheat cropping systems including intensive tillage system, conventional and deep tillage, conservation tillage that consisting of minimum tillage, ridge tillage, and no-till or zero tillage system. Zero tillage gives more accessible and efficient planting system that ensures timely wheat cultivation, cut off the tillage operation, better crop residue management that ultimately minimize the cost of production and keeps environment clean. Operational costs for wheat sowing are 50-60% lower with zero tillage (ZT) sowing than with conventional sowing. The cost saving effect is the main reason for the spread of zero tillage technology in rice-wheat system. Current paper presented a review of different tillage systems and their effects on soil physical properties, plant available water, soil organic matter and nutrients, rice residues, wheat yield and farmer’s economics.


Weed Science ◽  
1986 ◽  
Vol 34 (2) ◽  
pp. 256-259 ◽  
Author(s):  
Barbara M. Biniak ◽  
Richard J. Aldrich

The potential of preventing seed production and reducing seed viability of weeds that commonly grow taller than soybeans [Glycine max(L.) Merr. ‘Williams 82’] was evaluated. Chlorflurenol (2-chloro-9-hydroxy-9H-fluorene-9-carboxylic acid), chlorsulfuron {2-chloro-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino] carbonyl] benzenesulfonamide}, and glyphosate [N-(phosphonomethyl)glycine] were evaluated against sparse stands of velvetleaf (Abutilon theophrastiMedik. # ABUTH) and giant foxtail (Setaria faberiHerrm. # SETFA) growing in soybeans. Simulated-roller applications of all three herbicides significantly reduced seed production and germination of both weeds, although glyphosate was more effective than were the other two. Applications during early flowering of velvetleaf and early heading of giant foxtail reduced seed production more than later applications when some seeds were present. With the early application of glyphosate, 99% prevention of velvetleaf and 96% prevention of giant foxtail seed production were attained. With the early glyphosate application, germination of seeds produced was reduced by 50% in velvetleaf and by 95% in giant foxtail. Soybean yields were not reduced by either glyphosate or chlorflurenol but were drastically reduced by chlorsulfuron.


Sign in / Sign up

Export Citation Format

Share Document