Populations of EPTC-Degrading Microorganisms in Soils by Accelerated Rates of EPTC Degradation

Weed Science ◽  
1988 ◽  
Vol 36 (1) ◽  
pp. 96-101 ◽  
Author(s):  
Thomas B. Moorman

Reduced effectiveness of carbamothioate (thiocarbamate) herbicides in certain soils has been attributed to rapid herbicide degradation by soil microorganisms. Studies were conducted to determine if greater populations of EPTC (S-ethyl dipropyl carbamothioate)-degrading microorganisms were responsible for increased rates of degradation observed following repeated applications of EPTC to a Grenada silt loam soil. EPTC-degrading microorganism populations, measured with a14C-MPN (most-probable-number) technique, were not larger in soils with accelerated rates of EPTC degradation, and degrader populations did not increase after application of 6 mg EPTC/kg of soil. Degrader populations increased after application of 60 mg EPTC/kg of soil only in soil previously treated for 6 yr with EPTC. Increased rates of metabolism of EPTC were apparently responsible for the increased rates of degradation, rather than increased populations of degraders.

1982 ◽  
Vol 62 (4) ◽  
pp. 969-977 ◽  
Author(s):  
PATRICIA S. HOLLOWAY ◽  
ROBERT M. VAN VELDHUIZEN ◽  
CECIL STUSHNOFF ◽  
DAVID K. WILDUNG

Vegetative growth of lingonberries was observed on plants growing in four unsterilized, native-Alaskan substrates: coarsely-ground Lemeta peat, Fairbanks silt loam soil, a mixture of peat and silt loam soil and washed Chena very fine sandy loam soil. Following three growing seasons, plants in the peat treatment showed the greatest increase in vegetative growth as revealed by the number of new stems produced, stem length and dry weight per plant. Leaf size did not differ among substrate treatments. The leaves on plants grown in the peat substrate remained green throughout the entire experiment. The leaves of plants in all other treatments showed varying degrees of chlorosis followed by reddening and necrosis. Differences in concentration of N, P, K, Mn, Fe, Zn and Al in whole-plant tissue samples were recorded. The results indicate lingonberries should be grown in a peat substrate for maximum growth and dry matter accumulation.


2021 ◽  
Author(s):  
Toby A Adjuik ◽  
Sue E Nokes ◽  
Michael D Montross ◽  
Ole Wendroth

Sign in / Sign up

Export Citation Format

Share Document