scholarly journals Some Remarks on the Statics and Dynamics of Magnetic Field Structure Development in Active Regions

1971 ◽  
Vol 43 ◽  
pp. 201-211
Author(s):  
V. Bumba ◽  
J. Suda

Some comments are given concerning the fine structures in the umbra and penumbra of sunspots and their changes on the basis of high resolution photographs.

A summary is given on recent results on the physics of the quiet solar atmosphere, and active regions. This includes: solar rotation, velocity fields and waves, magnetic field concentration, the transition region, coronal magnetic field structure, and prominences.


2019 ◽  
Vol 15 (S350) ◽  
pp. 181-186
Author(s):  
Richard Teague

AbstractUnderstanding the physical structure of the planet formation environment, the protoplanetary disk, is essential for the interpretation of high resolution observations of the dust and future observations of the magnetic field structure. Observations of multiple transitions of molecular species offers a unique view of the underlying physical structure through excitation analyses. Here we describe a new method to extract high-resolution spectra from low-resolution observations, then provide two case studies of how molecular excitation analyses were used to constrain the physical structure in TW Hya, the closest protoplanetary disk to Earth.


1971 ◽  
Vol 43 ◽  
pp. 435-442 ◽  
Author(s):  
M. J. Martres ◽  
I. Soru-Escaut ◽  
J. Rayrole

We have tried to find empirical evidence for the role of photospheric motions in the building up of the flare productive magnetic patterns in Active Regions.The bright Hα faculae are associated with V∥ structures different from a classical Evershed flow and particularly ‘anomalous’ in the regions and periods of high flare occurrence. The flares observed occurred at ‘crossings’ of the lines V∥ = 0(V ≠ 0) and H∥ = 0 and at places where V∥ = 0 showed abrupt changes of direction. It is suggested that these anomalous V∥ structures are evidence of vortex motions.


2004 ◽  
Vol 352 (4) ◽  
pp. 1347-1364 ◽  
Author(s):  
P. W. Lucas ◽  
Misato Fukagawa ◽  
Motohide Tamura ◽  
A. F. Beckford ◽  
Yoichi Itoh ◽  
...  

1971 ◽  
Vol 43 ◽  
pp. 237-242
Author(s):  
H. Zirin

We show how to determine the magnetic field structure in active regions from the Hα morphology. We also show the role of the EFR (emerging flux region) as a bipolar region of velocity downflow. Finally, we point out that since all new magnetic flux emerges in strictly bipolar form, complex spot groups must result from surface interaction, hence most of the solar surface field may be produced on the surface.


2001 ◽  
Vol 203 ◽  
pp. 393-395
Author(s):  
Y. Hanaoka

The three-dimensional structure of the magnetic field in the source region of CMEs is the key to understand how the stored magnetic energy eventually causes an eruption. A CME accompanied by a filament eruption on 2000 February 26-27 is particularly a good event to study the three-dimensional magnetic field structure. This event was very well observed with the EIT and LASCO of SOHO and the SXT of Yohkoh, and shows the following clues of the magnetic field structure which caused the CME. (1) The filament had a helical structure before the eruption and it was kept throughout the eruption. (2) The coronal loop structure shows that this event was an eruption of a part of the quadrapolar magnetic field structure consisting of two active regions. In this proceeding, we present a brief overview of the event.


Sign in / Sign up

Export Citation Format

Share Document