Coronal Magnetic Field Structure in Solar Active Regions

Author(s):  
L. V. Yasnov

A summary is given on recent results on the physics of the quiet solar atmosphere, and active regions. This includes: solar rotation, velocity fields and waves, magnetic field concentration, the transition region, coronal magnetic field structure, and prominences.


1994 ◽  
Vol 144 ◽  
pp. 21-28 ◽  
Author(s):  
G. B. Gelfreikh

AbstractA review of methods of measuring magnetic fields in the solar corona using spectral-polarization observations at microwaves with high spatial resolution is presented. The methods are based on the theory of thermal bremsstrahlung, thermal cyclotron emission, propagation of radio waves in quasi-transverse magnetic field and Faraday rotation of the plane of polarization. The most explicit program of measurements of magnetic fields in the atmosphere of solar active regions has been carried out using radio observations performed on the large reflector radio telescope of the Russian Academy of Sciences — RATAN-600. This proved possible due to good wavelength coverage, multichannel spectrographs observations and high sensitivity to polarization of the instrument. Besides direct measurements of the strength of the magnetic fields in some cases the peculiar parameters of radio sources, such as very steep spectra and high brightness temperatures provide some information on a very complicated local structure of the coronal magnetic field. Of special interest are the results found from combined RATAN-600 and large antennas of aperture synthesis (VLA and WSRT), the latter giving more detailed information on twodimensional structure of radio sources. The bulk of the data obtained allows us to investigate themagnetospheresof the solar active regions as the space in the solar corona where the structures and physical processes are controlled both by the photospheric/underphotospheric currents and surrounding “quiet” corona.


1971 ◽  
Vol 43 ◽  
pp. 595-608 ◽  
Author(s):  
Kenneth H. Schatten

The structure of the magnetic field of the active solar corona is discussed with reference to optical and radio observations of the solar atmosphere. Eclipse observations provide evidence of fine scale structures in the solar atmosphere that appear to relate to the coronal magnetic field. The coronal magnetic field used for comparison is that field calculated from potential theory: the influence of solar activity upon the potential theory field is discussed with reference to observations of the Faraday rotation of a microwave signal from Pioneer 6 as it was occulted by the solar atmosphere. Evidence has been found suggesting the existence of expanding magnetic bottles located at 10 R⊙ above flaring active regions. The dynamics of these events is discussed. It is further suggested that these magnetic bottles are an important component in the solar corona.


1971 ◽  
Vol 43 ◽  
pp. 201-211
Author(s):  
V. Bumba ◽  
J. Suda

Some comments are given concerning the fine structures in the umbra and penumbra of sunspots and their changes on the basis of high resolution photographs.


1971 ◽  
Vol 43 ◽  
pp. 435-442 ◽  
Author(s):  
M. J. Martres ◽  
I. Soru-Escaut ◽  
J. Rayrole

We have tried to find empirical evidence for the role of photospheric motions in the building up of the flare productive magnetic patterns in Active Regions.The bright Hα faculae are associated with V∥ structures different from a classical Evershed flow and particularly ‘anomalous’ in the regions and periods of high flare occurrence. The flares observed occurred at ‘crossings’ of the lines V∥ = 0(V ≠ 0) and H∥ = 0 and at places where V∥ = 0 showed abrupt changes of direction. It is suggested that these anomalous V∥ structures are evidence of vortex motions.


1974 ◽  
Vol 57 ◽  
pp. 97-101
Author(s):  
K. Kai ◽  
K. V. Sheridan

(Solar Phys.). An exceptional variety of positions and polarizations was found for two type I storms and numerous sporadic bursts observed during 15 consecutive days with the Culgoora radio-heliograph at 80 and 160 MHz.


Sign in / Sign up

Export Citation Format

Share Document