imaging polarimetry
Recently Published Documents


TOTAL DOCUMENTS

365
(FIVE YEARS 37)

H-INDEX

37
(FIVE YEARS 5)

2022 ◽  
Vol 502 ◽  
pp. 127420
Author(s):  
Huy-Mai Le ◽  
Thanh Hai Le ◽  
Quoc Hung Phan ◽  
Thi-Thu-Hien Pham

2022 ◽  
Vol 148 ◽  
pp. 106767
Author(s):  
Tingkui Mu ◽  
Feng Han ◽  
Haoyang Li ◽  
Abudusalamu Tuniyazi ◽  
Qiuxia Li ◽  
...  

2021 ◽  
Author(s):  
Linan Jiang ◽  
Sawyer Miller ◽  
Xingzhou Tu ◽  
Matthew Smith ◽  
Yang Zou ◽  
...  

2021 ◽  
Author(s):  
R. Kalita ◽  
W. Flanagan ◽  
J. Lightley ◽  
S. Kumar ◽  
Y. Alexandrov ◽  
...  

AbstractWe present a robust, low-cost single-shot implementation of differential phase microscopy utilising a polarisation-sensitive camera to simultaneously acquire 4 images from which the phase gradients and quantitative phase image can be calculated. This polarisation-resolved differential phase contrast (pDPC) microscopy technique can be interleaved with single-shot imaging polarimetry.


2021 ◽  
Vol 224 (7) ◽  
Author(s):  
Shelby E. Temple ◽  
Martin J. How ◽  
Samuel B. Powell ◽  
Viktor Gruev ◽  
N. Justin Marshall ◽  
...  

ABSTRACTPolarization vision is widespread in nature, mainly among invertebrates, and is used for a range of tasks including navigation, habitat localization and communication. In marine environments, some species such as those from the Crustacea and Cephalopoda that are principally monochromatic, have evolved to use this adaptation to discriminate objects across the whole visual field, an ability similar to our own use of colour vision. The performance of these polarization vision systems varies, and the few cephalopod species tested so far have notably acute thresholds of discrimination. However, most studies to date have used artificial sources of polarized light that produce levels of polarization much higher than found in nature. In this study, the ability of octopuses to detect polarization contrasts varying in angle of polarization (AoP) was investigated over a range of different degrees of linear polarization (DoLP) to better judge their visual ability in more ecologically relevant conditions. The ‘just-noticeable-differences’ (JND) of AoP contrasts varied consistently with DoLP. These JND thresholds could be largely explained by their ‘polarization distance’, a neurophysical model that effectively calculates the level of activity in opposing horizontally and vertically oriented polarization channels in the cephalopod visual system. Imaging polarimetry from the animals’ natural environment was then used to illustrate the functional advantage that these polarization thresholds may confer in behaviourally relevant contexts.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 208
Author(s):  
Javier Brugés Martelo ◽  
Jan Lundgren ◽  
Mattias Andersson

The manufacturing of high-quality extruded low-density polyethylene (PE) paperboard intended for the food packaging industry relies on manual, intrusive, and destructive off-line inspection by the process operators to assess the overall quality and functionality of the product. Defects such as cracks, pinholes, and local thickness variations in the coating can occur at any location in the reel, affecting the sealable property of the product. To detect these defects locally, imaging systems must discriminate between the substrate and the coating. We propose an active full-Stokes imaging polarimetry for the classification of the PE-coated paperboard and its substrate (before applying the PE coating) from industrially manufactured samples. The optical system is based on vertically polarized illumination and a novel full-Stokes imaging polarimetry camera system. From the various parameters obtained by polarimetry measurements, we propose implementing feature selection based on the distance correlation statistical method and, subsequently, the implementation of a support vector machine algorithm that uses a nonlinear Gaussian kernel function. Our implementation achieves 99.74% classification accuracy. An imaging polarimetry system with high spatial resolution and pixel-wise metrological characteristics to provide polarization information, capable of material classification, can be used for in-process control of manufacturing coated paperboard.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243296
Author(s):  
Benjamin Fritz ◽  
Gábor Horváth ◽  
Ruben Hünig ◽  
Ádám Pereszlényi ◽  
Ádám Egri ◽  
...  

Many insect species rely on the polarization properties of object-reflected light for vital tasks like water or host detection. Unfortunately, typical glass-encapsulated photovoltaic modules, which are expected to cover increasingly large surfaces in the coming years, inadvertently attract various species of water-seeking aquatic insects by the horizontally polarized light they reflect. Such polarized light pollution can be extremely harmful to the entomofauna if polarotactic aquatic insects are trapped by this attractive light signal and perish before reproduction, or if they lay their eggs in unsuitable locations. Textured photovoltaic cover layers are usually engineered to maximize sunlight-harvesting, without taking into consideration their impact on polarized light pollution. The goal of the present study is therefore to experimentally and computationally assess the influence of the cover layer topography on polarized light pollution. By conducting field experiments with polarotactic horseflies (Diptera: Tabanidae) and a mayfly species (Ephemeroptera: Ephemera danica), we demonstrate that bioreplicated cover layers (here obtained by directly copying the surface microtexture of rose petals) were almost unattractive to these species, which is indicative of reduced polarized light pollution. Relative to a planar cover layer, we find that, for the examined aquatic species, the bioreplicated texture can greatly reduce the numbers of landings. This observation is further analyzed and explained by means of imaging polarimetry and ray-tracing simulations. The results pave the way to novel photovoltaic cover layers, the interface of which can be designed to improve sunlight conversion efficiency while minimizing their detrimental influence on the ecology and conservation of polarotactic aquatic insects.


2020 ◽  
Vol 642 ◽  
pp. A79
Author(s):  
Natasha L. S. Jeffrey ◽  
Pascal Saint-Hilaire ◽  
Eduard P. Kontar

Solar flare electron acceleration is an extremely efficient process, but the method of acceleration is not well constrained. Two of the essential diagnostics, electron anisotropy (velocity angle to the guiding magnetic field) and the high energy cutoff (highest energy electrons produced by the acceleration conditions: mechanism, spatial extent, and time), are important quantities that can help to constrain electron acceleration at the Sun but both are poorly determined. Here, by using electron and X-ray transport simulations that account for both collisional and non-collisional transport processes, such as turbulent scattering and X-ray albedo, we show that X-ray polarization can be used to constrain the anisotropy of the accelerated electron distribution and the most energetic accelerated electrons together. Moreover, we show that prospective missions, for example CubeSat missions without imaging information, can be used alongside such simulations to determine these parameters. We conclude that a fuller understanding of flare acceleration processes will come from missions capable of both X-ray flux and polarization spectral measurements together. Although imaging polarimetry is highly desired, we demonstrate that spectro-polarimeters without imaging can also provide strong constraints on electron anisotropy and the high energy cutoff.


2020 ◽  
Vol 28 (19) ◽  
pp. 27324
Author(s):  
Bo Cheng ◽  
Yuxiao Zou ◽  
Hanxiao Shao ◽  
Tong Li ◽  
Guofeng Song
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document