scholarly journals Large Scale Magnetohydrodynamical Considerations in Spiral Galaxies

1983 ◽  
Vol 100 ◽  
pp. 157-158
Author(s):  
E. Battaner ◽  
M. L. Sánchez-Saavedra

A magnetohydrodynamical result is deduced, which could contribute to our understanding of spiral and ring structures in galaxies. The usual expressions for the continuity, momentum and induction equations are adopted for the gas of a galaxy, and the following simplifying hypotesis are made : a) Steady state conditions, b) Axisymmetry, c) A velocity field given by (π=0, θ=θ(r), Z=0) for the interstellar gas (where π,θ and Z are the radial, azimuthal and vertical to the galactic plane components and r is the distance from the galactic center). Then, the direction of magnetic field must be azimuthal and the plasma distribution is compatible with ring structures.

1989 ◽  
Vol 136 ◽  
pp. 243-263 ◽  
Author(s):  
F. Yusef-Zadeh

Recent studies of the Galactic center environment have revealed a wealth of new thermal and nonthermal features with unusual characteristics. A system of nonthermal filamentary structures tracing magnetic field lines are found to extend over 200pc in the direction perpendicular to the Galactic plane. Ionized structures, like nonthermal features, appear filamentary and show forbidden velocity fields in the sense of Galactic rotation and large line widths. Faraday rotation characteristics and the flat spectral index distributions of the nonthermal filaments suggest a mixture of thermal and nonthermal gas. Furthermore, the relative spatial distributions of the magnetic structures with respect to those of the ionized and molecular gas suggest a physical interaction between these two systems. In spite of numerous questions concerning the origin of the large-scale organized magnetic structures, the mechanism by which particles are accelerated to relativistic energies, and the source or sources of heating the dust and gas, recent studies have been able to distinguish the inner 200pc of the nucleus from the disk of the Galaxy in at least two more respects: (1) the recognition that the magnetic field has a large-scale structure and is strong, uniform and dynamically important; and (2) the physics of interstellar matter may be dominated by the poloidal component of the magnetic field.


1991 ◽  
Vol 144 ◽  
pp. 169-174
Author(s):  
Yoshiaki Sofue

A review is given of large-scale magnetic fields in disks and halos of spiral galaxies. A particular attention is given to vertical field structures, and we discuss their origin and implication on their interaction with halo gas. We point out that the disk-halo magnetic interface plays an important role in circulation of interstellar gas in galaxies, in particular a large-scale circulartion from the galactic center to outer disk regions.


2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


2011 ◽  
Vol 28 (2) ◽  
pp. 171-176 ◽  
Author(s):  
P. P. Kronberg ◽  
K. J. Newton-McGee

AbstractWe apply a new, expanded compilation of extragalactic source Faraday rotation measures (RM) to investigate the broad underlying magnetic structure of the Galactic disk at latitudes ∣b∣ ≲15° over all longitudes l, where our total number of RMs is comparable to those in the combined Canadian Galactic Plane Survey (CGPS) at ∣b∣ < 4° and the Southern Galactic Plane (SGPS) ∣b∣<1.5°. We report newly revealed, remarkably coherent patterns of RM at ∣b∣≲15° from l∼270° to ∼90° and RM(l) features of unprecedented clarity that replicate in l with opposite sign on opposite sides of the Galactic center. They confirm a highly patterned bisymmetric field structure toward the inner disc, an axisymmetic pattern toward the outer disc, and a very close coupling between the CGPS/SGPS RMs at ∣b∣≲3° (‘mid-plane’) and our new RMs up to ∣b∣∼15° (‘near-plane’). Our analysis also shows the vertical height of the coherent component of the disc field above the Galactic disc's mid-plane—to be ∼1.5 kpc out to ∼6 kpc from the Sun. This identifies the approximate height of a transition layer to the halo field structure. We find no RM sign change across the plane within ∣b∣∼15° in any longitude range. The prevailing disc field pattern and its striking degree of large-scale ordering confirm that our side of the Milky Way has a very organized underlying magnetic structure, for which the inward spiral pitch angle is 5.5°±1° at all ∣b∣ up to ∼12° in the inner semicircle of Galactic longitudes. It decreases to ∼0° toward the anticentre.


2008 ◽  
Vol 4 (S259) ◽  
pp. 455-466 ◽  
Author(s):  
JinLin Han

AbstractThe magnetic structure in the Galactic disk, the Galactic center and the Galactic halo can be delineated more clearly than ever before. In the Galactic disk, the magnetic structure has been revealed by starlight polarization within 2 or 3 kpc of the Solar vicinity, by the distribution of the Zeeman splitting of OH masers in two or three nearby spiral arms, and by pulsar dispersion measures and rotation measures in nearly half of the disk. The polarized thermal dust emission of clouds at infrared, mm and submm wavelengths and the diffuse synchrotron emission are also related to the large-scale magnetic field in the disk. The rotation measures of extragalactic radio sources at low Galactic latitudes can be modeled by electron distributions and large-scale magnetic fields. The statistical properties of the magnetized interstellar medium at various scales have been studied using rotation measure data and polarization data. In the Galactic center, the non-thermal filaments indicate poloidal fields. There is no consensus on the field strength, maybe mG, maybe tens of μG. The polarized dust emission and much enhanced rotation measures of background radio sources are probably related to toroidal fields. In the Galactic halo, the antisymmetric RM sky reveals large-scale toroidal fields with reversed directions above and below the Galactic plane. Magnetic fields from all parts of our Galaxy are connected to form a global field structure. More observations are needed to explore the untouched regions and delineate how fields in different parts are connected.


Author(s):  
David Burstein ◽  
Roger L. Davies ◽  
Alan Dressler ◽  
S. M. Faber ◽  
Donald Lynden-Bell ◽  
...  

1990 ◽  
Vol 140 ◽  
pp. 83-89
Author(s):  
A.A. Ruzmaikin

The fast dynamo acting in a turbulent flow explains the origin of magnetic fields in astrophysical objects. Stellar cycles and large-scale magnetic fields in spiral galaxies reflect the behaviour of a mean magnetic field. Intermittent magnetic structures in clusters of galaxies are associated with random magnetic field.


2012 ◽  
Vol 10 (H16) ◽  
pp. 387-387
Author(s):  
S. Nishiyama ◽  
H. Hatano ◽  
T. Nagata ◽  
M. Tamura

AbstractWe present a large-scale view of the magnetic field (MF) in the central 3° × 2° region of our Galaxy. There is a smooth transition of the large-scale MF configuration in this region.


2008 ◽  
Vol 4 (S259) ◽  
pp. 75-80 ◽  
Author(s):  
Roland Kothes ◽  
Jo-Anne Brown

AbstractAs Supernova remnants expand, their shock waves are freezing in and compressing the magnetic field lines they encounter; consequently we can use Supernova remnants as magnifying glasses for their ambient magnetic fields. We will describe a simple model to determine emission, polarization, and rotation measure characteristics of adiabatically expanding Supernova remnants and how we can exploit this model to gain information about the large scale magnetic field in our Galaxy. We will give two examples: The SNR DA530, which is located high above the Galactic plane, reveals information about the magnetic field in the halo of our Galaxy. The SNR G182.4+4.3 is located close to the anti-centre of our Galaxy and reveals the most probable direction where the large-scale magnetic field is perpendicular to the line of sight. This may help to decide on the large-scale magnetic field configuration of our Galaxy. But more observations of SNRs are needed.


2005 ◽  
Vol 201 ◽  
pp. 501-502
Author(s):  
S. L. Parnovsky ◽  
V. E. Karachentseva ◽  
Yu. N. Kudrya ◽  
I. D. Karachentsev

We study a large-scale bulk motion of thin edge-on spiral galaxies from the RFGC catalogue using a multipole decomposition of velocity field. The quadrupole and octupole components are statistically significant. The first one corresponds to the Hubble flow anisotropy, the second one leads to decrease of modulus of dipole component due to the strong dipole-octupole interaction.


Sign in / Sign up

Export Citation Format

Share Document